Anja Røyne

Fysiker


Legg igjen en kommentar

Fyrverkerifysikk

Godt nyttår!

Hva er det egentlig som skjer når vi fyrer opp raketter? Hvordan ser fyrverkeriet ut inni, og hva er det der oppe i lufta som gir alle de fine effektene?

Jeg vet ikke med deg, men jeg har lurt på dette. Det viser seg at kjemien som skal til for å produsere forskjellige effekter kan være ganske kompleks, men noen grunnprinsipper er ikke så vanskelige å forstå.

1. Oppbygningen

Stort sett ser fyrverkeriet ut som et papprør, eller flere rør, med lunte. Røret fungerer som en kanon. I bunnen av røret ligger en kruttladning, og oppå den ligger kula som skal eksplodere i lufta og lage effekter. Når du tenner på lunta, antennes kruttladningen først. Den produserer masse varm gass som får kula til å presses ut i den eneste mulige retningen, nemlig opp gjennom papprøret og videre opp i lufta. Samtidig gikk flammen videre til en langsommere lunte, som får kula til å antennes i akkurat riktig høyde.

Inne i kula er det en ny kruttladning eller lignende som får kula til å eksplodere, og en eller flere pyrotekniske «stjerner», som er klumper laget av diverse kjemiske stoffer som gir farger, glitring, lyd ogsåvidereogsåvidere. Akkurat dette kunne man lett bruke et helt kjemikurs på, så jeg skal begrense meg til noen hovedsaker.

2. Farger

Hvit og gyllen farge kan man lage ved å varme opp stoffer så mye at de gløder, på samme måte som vi får lys fra trekull eller varm lava. Men de klare fargene, som rød, grønn og blå, kommer på en litt kulere måte. Inne i fyrverkeriet er det salter laget av metaller (metallsalt er ikke noe veldig spesielt: NaCl, vanlig bordsalt, er også et metallsalt. Na, natrium, er metallet, og det har dannet et salt sammen med klor.)

Det skjer noe spesielt når disse metallene varmes opp mye. Først begynner atomene bare å bevege masse på seg, men etterhvert blir de så gira at de ytterste elektronene deres klarer å klatre ett trappetrinn lengre vekk fra kjernen. Ut på tur! Kult! Denne lufteturen varer imidlertid ikke så lenge, for de er ganske hjemmekjære, disse elektronene. Når elektronet faller ned et trappetrinn igjen, mister det litt energi. Om jeg faller ned trappa, mister jeg også energi. Det gjør at det sier bang og jeg får vondt. Men når et elektron faller ned, mister det energien sin ved at det sendes ut lys i en bestemt farge. Siden trappetrinnene til forskjellige metaller har litt forskjellig lengde, er fargen fra hvert metall forskjellig. Det er dette vi gjør bruk av i fyrverkeri: Rødt fra strontium, orange fra kalsium, gult fra natrium, grønt fra barium og blått fra kobber. Se etter neste gang, så vil du se at den røde fargen er akkurat den samme røde fargen i hver eksplosjon. Fargeskrinet kan utvides ved å blande forskjellige stoffer, for eksempel strontium og kobber for å få lilla.

3. Plystring

Du vet de skrikerakettene? De som lager en lang plystrelyd som starter med en høy tone og ender med en som er litt lavere. Sånn fungerer de:

Et brennbart stoff er tettpakket nederst i et rør. Det antennes og brenner fra toppen. Brenningen lager varm gass som presses ut av toppen av røret. Dette gir en lyd, som når man spiller på en fløyte.

Etterhvert som stoffet brenner, blir det mer plass i røret. Fløyta blir lengre. Det gir en dypere lyd, og det er derfor tonen glir gradvis nedover.

Det er mye jeg ikke vet om fyrverkeri, så fortell det gjerne i kommentarfeltet om du vet noe mere morsomt om det!


1 kommentar

Marengsfysikk

Det er på tide med litt kjøkkenvitenskap. Er det egentlig noen som lager marengs til jul? Uansett så fikk jeg lyst til å skrive om hva som skjer med disse eggehvitene når de bankes opp og stekes.

Eggehvite består av proteiner, det vet vi. Egentlig består de stort sett av eggehviter og vann. Proteiner er lange molekyler, omtrent som perlekjeder laget av aminosyrer. Utsiden av disse aminosyre-perlene er sånn at noen områder elsker å være i kontakt med vann, og noen ikke kan fordra det. Inne i egget som kommer ut fra høna ligger hvert protein krøllet sammen med de vannelskende områdene ytterst og de vannhatende områdene godt gjemt inne i midten. Siden hvert protein er krøllet sammen til en ball, er det lett for proteinene å skli forbi hverandre. Derfor er eggehviten flytende.

Så skiller vi hviten fra plommen (det er gøy) og følger oppskriften der det står «pisk hvitene stive». Når vi rører kraftig i eggehviten skjer det to ting: Vi strekker på proteinballene, og vi blander ørsmå luftbobler inn i vannet.

Når et protein blir strukket ut i vann blir det skikkelig misfornøyd. Alle de vannhatende områdene higer etter å legge seg inntil noe som ikke er vann. Dette kan løses med å finne et annet utstrukket protein å koble seg sammen med. Men når det finnes luftbobler i røra, går det også an å krølle seg rundt en av dem. Ahh – så mye bedre. Etterhvert som du rører, består ikke eggehviten av vann med proteinballer i lengre. Den forandrer seg til et nettverk av luftbobler og proteinkjeder som er koblet sammen med hverandre. Da sklir ikke ting så lett forbi hverandre lengre, og du har pisket hvitene stive, rett og slett.

Så rører man inn sukker og eventuelt andre gode ting (forsiktig, så ikke protein-luft-strukturen blir ødelagt), legger det på et brett og setter det i ovnen. Når den piskede eggehviten blir varm utvider alle de fangede luftboblene seg littegrann slik at strukturen vokser. Men enda viktigere er det at vannet i eggehviten fordamper. Dampen kan ganske lett komme seg inn i luftboblene, mens det er vanskeligere å komme seg ut i lufta i stekeovnen. Derfor blir luftboblene fylt av masse damp og vokser og blir skikkelig store, og proteinstrukturen tørker og blir hard i denne formen.

Ta brettet ut av ovnen, og voilà – marengs.

8141226774_bc3279fb03_o

Bilde: Receta no44/Flickr/CC license

En vanskeligere fetter av marengsen er suffléen. Her er de piskede eggehvitene blandet med masse andre godsaker, slik at det fort kan skje at det hele kollapser.

For en stund siden fikk vi et foredrag på jobben om matvitenskap, eller molekylær gastronomi, som kanskje er en slags nerde-versjon av emnet, av Erik Fooladi ved Høgskulen i Volda. Da lærte jeg noe nytt om sufflé som jeg gjerne vil bringe videre:

Et husmortriks sier er at når du tar suffléen ut av ovnen skal du ikke sette den forsiktig ned på benken, men du skal slippe den ned fra 20 (?) centimeters høyde. Det høres skummelt ut, men virker det? Visstnok, ja. Her er forklaringen: Suffléen holdes oppe av masse små luftbobler. Når den avkjøles, krymper luften inne i alle boblene. Dette skaper et undertrykk og suffléen suges sammen og blir flat og kjip (jeg kan skrive under på at dette kan skje). Men: Om du først har gitt suffléen en trøkk, har det oppstått mange mikroskopiske sprekker i strukturen. Når luften avkjøles er det mulig for luft fra utsiden å strømme inn i boblene, slik at det aldri blir skikkelig undertrykk. Og da holder suffléen seg fin og stor.

Jeg har ikke prøvd selv, for det er skjelden jeg finner på noen grunn  til å lage sufflé. Har du noen erfaring med dette, så si gjerne fra!


Legg igjen en kommentar

«Hjemme hos»-reportasje om pastakoking

I dag hadde jeg besøk av AftenpostenTV som ville ha meg til å forklare hvorfor en tresleiv på tvers over pastakjelen får den til å la være å koke over.

Ikke tidenes beste triks, kanskje, men det er nå litt artig. Siden det var planleggingsdag i barnehagen var jentene hjemme og fikk spise så mye de ville av både kokt og ukokt pasta. Og så ble det spagettigrateng til middag. Det var ikke så populært.

Skulle kanskje ha prøvd å sminke bort de jetlag-ringene jeg har under øynene.

Screenshot 2014-09-01 19.16.03

Dette er bare et screenshot, du kan se videoen ved å klikke her.


Legg igjen en kommentar

Luftspeilinger

En god kollega hadde vært på langtur med bil i ferien, og han hadde flere ganger sett luftspeilinger på asfalten når de kjørte lange rette strekninger. Det er sikkert mange som har sett himmelen speile seg i motorveien på varme dager. Hvordan blir den varme asfalten plutselig til et speil?

Luftspeiling på motorveien. Bilde: "A Highway Mirage", Michael Gil/FLickr/CC license.

Luftspeiling på motorveien. Bilde: «A Highway Mirage«, Michael Gil/FLickr/CC license.


Selv forbinder jeg luftspeilinger aller mest med Donald. Donald går i ørkenen og er fryktelig tørst. Han ser et basseng og kaster seg ned i det for å drikke. Men så viser det seg at det bare er sand. Jeg mener at det finnes flere varianter, blant annet en der han ser en bod som selger kald drikke.

Denne siden fra et Micky Mouse-blad fra 1951 har jeg kopiert fra denne bloggen.

Denne siden fra et Micky Mouse-blad fra 1951 har jeg kopiert fra denne bloggen.


Lys og luft
Vanligvis går lyset rett frem gjennom lufta, og når lyset fra en ting treffer øynene våre, forstår hjernen vår at denne tingen befinner seg i den retningen lyset kom fra.

Men luft er ikke alltid bare luft. Når lufta varmes opp, blir det lengre mellom hvert luftmolekyl. Lufta tar mer plass, den blir lettere og den stiger oppover. Og siden det er færre molekyler å snakke med, går lyset fortere i varm luft enn den gjør når lufta er kald.

Hvordan sand blir til speil
Som man merker når man går barbeint, kan asfalt (og ørkensand) bli svært varm når sola skinner på den. Dette fører til at lufta inntil asfalten også varmes opp. Den varme lufta stiger opp og avkjøles. Altså blir det liggende et lag med veldig varm luft helt nederst mot bakken, med en gradvis overgang til den kjøligere lufta over.

Tenk deg en lysstråle fra himmelen, som kommer på skrått inn mot den varme veien. Når lyset kommer inn i varmere luft, vil det gå litt fortere. Siden den nederste delen av lysstrålen treffer den varme lufta først, vil den gå fortest, og det får hele lysstrålen til å bøye seg inn langs bakken.

Dersom temperaturforskjellen er tilstrekkelig stor over et lite område, vil lysstrålen svinge så mye at den plutselig er på vei oppover igjen. Uten at den noen gang har truffet bakken. Det er litt som om lyset har truffet et speil, bortsett fra at det svinger gradvis i steden for å sprette ut som en sprettball.

Du kan se at himmelen speiler seg i veien om du befinner deg omtrent i samme høyde som der temperaturforandringen skjer. Inne i en bil på veien, for eksempel. Om du har flaks.

Hjernen gjør så godt den kan
Om du ser på bakken langt foran deg, og ser et speilbilde av himmelen, så kan ikke hjernen forstå annet enn at det må ligge noe blankt akkurat der som har laget det speilbilde. I ørkenen blir det nødt til å være en speilblank vannoverflate.

Men du vil aldri nå helt frem til den – om du ikke er Donald.

Luftspeiling i Egypt. Bilde: "Mirage in the Desert", Michael Gwyther-Jones//Flickr/CC lisence.

Luftspeiling i Egypt. Bilde: «Mirage in the Desert«, Michael Gwyther-Jones/Flickr/CC license.


2 kommentarer

Musikkfysikk. Strengteori.

Bilde: Andrew Sutherland/"<a href=

Jeg har en cello som jeg liker å spille på, aller helst sammen med andre. De siste årene har jeg lagt den klassiske opplæringen min fullstendig på hylla til fordel for folkemusikken. Fordelen med å spille cello i spellemannslag er at stort sett ingen andre gjør det, så jeg kan spille hva jeg vil – melodi, andrestemme, komp, med bue eller uten bue, få toner eller mange toner.

For at en cello skal lage lyd, må en av strengene settes i bevegelse. Strengen sitter fast i topp og bunn, men midten er fri til å bevege seg frem og tilbake. Denne bevegelsen forplanter seg til treverket og lufta inni instrumentet, og til lufta på utsiden av instrumentet, som fører lyden frem til ørene til den som hører på. Desto raskere strengen svinger frem og tilbake, desto lysere blir tonen.

Strenglovene

Vi tenker vel ikke så ofte over strengteorien, men strengpraksisen har alle prøvd. Strengen følger tre lover:

1. jo mer du trekker i strengen, jo fortere vibrerer den. Prøv en strikk. Eller lag prompelyder med en ballong.

2. jo lengre strengen er, jo saktere vibrerer den. Den lyse fiolinen er mye mindre enn den mørke kontrabassen.

3. jo tyngre (i praksis: tykkere) strengen er, jo saktere vibrerer den. Kontrabassens tykke strenger krever sterke fingre. De tynne fiolinstrengene gir såre fingertupper.

Strengfinesser

En cello har fire strenger i forskjellig tykkelse. Jeg tror tykkelsene er beregnet slik at alle strengene må være omtrent like stramme for å få riktige toner. Om alle strengene hadde vært like tykke, så hadde den øverste blitt vanskelig for fingrene å klemme ned, mens den nederste hadde vært vanskelig å få i bevegelse.

For å få frem alle tonene i skalaen, bruker man fingrene på venstre hånd til å klemme strengen man spiller på ned mot gripebrettet på riktig sted. Det gjør strengen kortere og tonen lysere. Det som jeg egentlig synes er litt rart er at man setter fingrene på akkurat samme plass på de forskjellige strengene. Jeg kan for eksempel legge en finger på tvers over to strenger og spille to (riktige) toner på en gang. På en gitar går jo båndene tvers over halsen.

Dette fungerer fordi skalaen vi bruker (som er bare en av mange, men det lar jeg være akkurat nå) er konstruert slik at det er like langt mellom hver halvtone. For å gå fra en tone til den neste må du kutte vekk en viss andel av strengen. Siden det er andelen som er konstant, blir avstanden mellom fingrene mindre og mindre jo lengre opp på strengen man er. Dette er det også lett å se på en gitar.

Barnestrenger

Om du skulle ha blitt en verdensberømt fiolinist, måtte du ha startet øvingen før du begynte på skolen. Siden små barn har korte armer og fingre spiller de på små instrumenter. Strengene er kortere, men lager de samme tonene som de store vokseninstrumentene.

Er barnestrengene like tykke som voksenstrengene? lurte vi på en gang vi hadde pause. Tykkere strenger kunne ha kompensert for at strengene var kortere, og gitt samme tone. Men sånn er det visst ikke. Siden barnestrengene er kortere men like tykke som de voksne, må de være slakkere for at tonen skal bli riktig. Det gjør sikkert også at det er lettere å klemme strengene ned, og det passer fint for barnefingre.

Bratsj

Jeg skulle gjerne ha spilt bratsj. Den er enkel å ta med seg, som en fiolin, men dyp og kul litt på samme måte som en cello. Bratsjen er større en fiolinen, men har tonene på tre av strengene til felles med den. Den bruker litt tykkere strenger. Når strengene er både lengre og tyngre, betyr det at de må være veldig stramme for å få riktig tone? Eller hvordan fungerer egentlig dette? Er det noen bratsjister der ute som kan komme meg til unnsetning?


Legg igjen en kommentar

Kakaoeffekten

20140302-104055.jpgDu har sikkert prøvd å lage kakao, eller kanskje kaffe, ved å blande pulver og varmt vann i en kopp. Om du rører ut pulveret med en metallskje og lar den dunker mot siden av koppen mens du rører, kan du noen ganger høre at tonen i dunkelyden stiger mens du rører.

Hvorfor er det sånn?

Dette har selvfølgelig blitt besvart på skikkelig vis av en fysiker. Frank Crawford publiserte en artikkel i 1982 i American Journal of Physics med navnet «The hot chocolate effect». Effekten har også fått sin egen side på engelskspråklig Wikipedia, men ikke på norsk ennå, dessverre.

Kakaomusikk

Koppen med kakao oppfører seg som et musikkinstrument med en bestemt egenfrekvens. Egenfrekvensen til koppen avhenger av hva som er i den, og hvor mye som er i den. Om du dunker på koppen mens du heller vann oppi, vil tonen bli dypere desto fullere koppen blir. På samme måte lager en stor tromme dypere lyd enn en liten tromme, og kontrabassen har mye lengre strenger enn den lyse fiolinen.

Egenfrekvensen avhenger altså av hvor langt lyden må reise, men også av hvor lang tid den bruker på å reise. Om lyden går raskere, blir egenfrekvensen høyere og tonen lysere.

Hva som skjer i koppen

Når du skal lage kakao fra pulver, starter du med å varme opp vann. De fleste gasser liker seg ikke like godt i varmt som i kaldt vann. Det betyr at når du varmer opp vann som har vært kaldt, begynner den oppløste luften i vannet å få lyst til å komme seg ut. For å klare dette, må den lage bobler, og det er ikke gjort i en håndvending. Den vil helst ha noen passende overflater å begynne å  bygge boblene sine på.

Dette får den, først når du heller vannet ned i din ikke helt perfekt glatte kopp, og dernest i massevis når du tilsetter kakaopulveret. Vips blir koppen fylt av ørsmå, glade bobler. Når du rører hjelper du boblene med å finne veien opp til overflaten og over i lufta.

Lydens hastighet i vann og luft

Hva har dette med lyden å gjøre? Lydens hastighet avhenger av hva den må reise gjennom. Lyd er trykkbølger. En forstyrrelse et sted forplanter seg gjennom systemet ved at molekyler dytter på hverandre.

Se for deg en stor idrettsplass som er rigget til for konsert med et kjent band. I begynnelsen står og går folk spredt rundt omkring på plassen. Om en snubler og faller, dytter han kanskje til en annen, som kanskje vakler litt før han treffer en til, og en til… men forstyrrelsen beveger seg ikke spesielt fort. Etterhvert kommer flere folk til, og når konserten er i gang, står tilhørerne trengt tett i tett sammen foran scenen. Når noen faller over hverandre bak, går det en bølge gjennom forsamlingen og de som står forrerst blir ganske raskt dyttet inn mot gjerdet.

Det siste er en lydbølge i vann. Det første er en lydbølge i luft. Lyden går raskere jo tettere og mer ordnet molekylene i stoffet sitter.

Kakaoeffekten

Når koppen nettopp har blitt fylt med varmt vann og pulver, blir lydbølgene bremset av alle de små boblene, noe som gir en lav tone. Etterhvert som boblene stiger opp og forsvinner blir det mindre luft og dermed høyere tone på dunkingen.

Du er forresten ikke nødt til å bruke pulver, det bør klare seg med varmt vann. Men materialet på både koppen og skjeen kan ha noe å si. Om vannet har kokt en stund, eller vært varmt lenge, kan det hende at mye av luften har unsluppet slik at effekten blir mindre. Prøv selv!


Legg igjen en kommentar

Så tenner vi ett lys i kveld

Bilde: Wikimedia Commons

Bilde: Wikimedia Commons

Så kom desember igjen (som julekvelden på kjerringa), og adventslys er tent i de tusen hjem. Dette må være årets beste unnskyldning til å finne ut hva en flamme egentlig er for noe.

Fyrstikken

Vi starter med en fyrstikk. For å få noe til å brenne må det først bli varmt nok, og hva varmt «nok» er avhenger av hva det er du vil brenne. Når du drar en fyrstikk mot siden av fyrstikkboksen skjer det en hel liten kjedereaksjon: Friksjonen mellom små glasspartikler på boksen og på fyrstikkhodet får en liten mengde av et kjemikalie på fyrstikkboksen til å ta fyr; dette igjen får et annet kjemikalie i fysrtikkhodet til å produsere oksygen, slik at svovelet i fyrstikkhodet kan begynne å brenne, og dette varmer opp treet i fyrstikken nok til at det tar fyr – voila. Så bruker vi denne flammen til å tenne på stearinlyset.

Veken og stearinen

Det er lett å se at stearinen i nærheten av flammen smelter. Veken  trekker den flytende stearinen opp, på samme måte som tørkepapir suger opp vann. Det vi trenger veken i strearinlyset til er å få den flytende strearinen opp og i kontakt med masse luft.

Helt oppe ved flammen er det så varmt at stearinen blir til gass. Når denne varme gassen kommer i kontakt med oksygenet i lufta, skjer det en heftig reaksjon. Det er dette som er selve forbrenningen. Oksygenet river karbonatomer og hydrogenatomer fra hverandre, og lager nye små molekyler, stort sett vann og CO2.

Flammefargene

Å ta stearin og lage CO2 er ikke fult så enkelt som å ta legoklosser fra hverandre og sette dem sammen på nye måter. Det første som skjer er at det dannes noen skikkelig gira molekyler. Når disse energibuntene slapper av og organiserer seg som trauste vann- og CO2-molekyler, kvitter de seg med den ekstra energien ved å sende ut lys. Dette kan vi se som den blå fargen nederst i flammen.

Den varme gassen stiger oppover, og i midten av gassen blir det vanskelig å få tak i alt det oksygenet som trengs for å få forbrent stearingassen. Karbonet som ikke finner noe oksygen å henge med klumper seg sammen til mikroskopiske sotpartikler. I den varme flammen får sotpartiklene så høy temperatur at de begynner å gløde. Dette får flammen til å bli gul.

Sot eller ikke sot

Dette hadde jeg ikke tenkt på før, men sånn går det når man begynner å google ting. I en rolig stearinlysflamme vil sotpartiklene forbrennes når de når den ytre sonen av flammen, der de har nok oksygen å leke med og temperaturen fortsatt er høy. Men om flammen forstyrres, for eksempel dersom adventskransen er tent i et rom med mye trekk, kan sotpartiklene slynges ut av flammen uten å brenne opp.

Hvis veken blir for lang, vil lyset også begynne å produsere sot. Men hvorfor det er slik har ikke google kunnet forklare meg i kveld. Dette irriterer meg virkelig. Er det sånn at flammen blir ustabil og blafrer når veken blir over en viss lengde, slik at man får samme effekt som av trekk? Eller er det fordi den lange veken gir ekstra mye drivstoff til flammen slik at sotet rett og slett ikke rekker å forbrennes før det forlater den varme flammen? Om det er noen flammeeksperter som leser dette, ville jeg bli takknemlig for en oppklaring i kommentarfeltet.


2 kommentarer

Melk, smør, såpe og snø

To av mine favorittfenomener forenes i meieriprodukter.

Melka er hvit, snøen er hvit

20130924-112144.jpgLyset som treffer oss fra sola består av mange forskjellige farger, og når du ser dem alle sammen på en gang oppfattes det som hvitt. Så når noe ser hvitt ut, er det fordi at alt lyset som treffer denne tingen blir reflektert tilbake til øynene dine.

Men det finnes jo andre overflater også som reflekterer alt som treffer dem. Speil. De ser ikke hvite ut!

Speil er glatte, og lyset som treffer speiloverflaten sendes tilbake igjen i en helt bestemt vinkel. Hvite overflater kan se glatte ut, men egentlig består de av massevis av små partikler. Partiklene kan godt være så små at du ikke kan se dem med det blotte øye. Dette er tilfellet i melka. Snøen, som også er hvit, består som kjent av mange små snøkrystaller – de trenger ikke være like små, men hver enkelt overflate på snøkrystallene er ikke særlig stor.

Når lyset treffer alle de små partiklene blir det reflektert i alle mulige retninger. Det lyset som ender opp med å treffe øynene dine er en samling av lys som opprinnelig kom fra forskjellige steder. Derfor ser du ikke et bilde, som i speilet, men du ser hvitt, fordi alle fargene har like stor sjanse til å havne i øyet ditt.

Vann i fett og fett i vann

Melka er altså hvit fordi den er full av bitte små partikler. Flesteparten av disse partiklene er fettklumper. Fett er noe som på ingen måte trives sammen med vann, og om vannet og fettet fikk det som de ville, ville alt fettet ha samlet seg på toppen av melka og vannet blitt liggende under. Dette skjer da også med melk som ikke er homogenisert.

For å tvinge fettet til å holde seg spredt i melka, trenger man noen molekyler som kan hjelpe overflatene litt. Det finnes en type molekyler som kalles surfaktanter. De har en ende som liker fett, og en annen som liker vann. Når en dråpe med fett blir dekket av de fettelskende endene på surfaktantene, slik at de vannelskende endene stikker ut i vannet, har plutselig fettklumpene det helt topp med å sveve rundt i vannet. Dette er akkurat det samme som skjer når man bruker såpe for å lure fettet fra klærne og over i vaskevannet. Når melka homogeniseres tvinger man flere av surfaktantene som finnes naturlig i melka til å sette seg på fettdråpene, slik at de blir mer stabile.

I smøret er det mye fett og litt vann, og her er det vannet som er spredt som dråper i fettet med de snille surfaktantmolekylene tett pakket rundt seg.

Når man har melk og skal lage smør må man få fettklumpene i melka til å samle seg. Dette gjør man med å riste og herje på melka samtidig som man blander inn masse luft. Lufta får overflatene til fettklumpene til å bli mindre stabil, slik at når to fettklumper kolliderer på grunn av all herjinga, er det større sjanse for at de smelter sammen til en stor klump.

Partytriks

Neste gang du vil bli kvitt noen på en fest, kan du fortelle dem at melk er en olje-i-vann-emulsjon mens smør er en vann-i-olje-emulsjon.

Du ville forresten ikke blitt kvitt meg.

(Dette er meget løselig basert på en presentasjon fra meieriteknologiekspert Sigrid Svanborg. Alle overforenklinger og misforståelser er mine egne.)


1 kommentar

Farvel, klesvask! Om stoffet som får alt til å prelle av

Antall visninger av filmen om nanobelegget Ultra-Ever Dry, som får klær og gjenstander til å holde seg rene nesten uansett hva du gjør med dem, nærmer seg syv millioner. Verden er tydeligvis klar for et slikt vidunderstoff. Men hvordan virker det egentlig?

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann og derfor ble dråpene også mindre.

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann, og derfor ble dråpene også mindre.

Overflater som hater alt

Noe av det jeg syntes var overraskende med Ultra-Ever Dry er at både olje og vann preller av. Vanligvis kan man dele inn stoffer i de som liker vann, og de som liker olje. Liker du olje, så hater du vann, og motsatt. Men her har vi altså et stoff som hater begge deler.

Nå vet ikke jeg akkurat hva dette vidundermiddelet er laget av, men det finnes en gruppe stoffer som ikke liker noen ting: Fluorkarboner. (At flourkarbonene kanskje ikke er de beste for kroppen og miljøet vil jeg overlate til noen andre å si noe om). Disse ligner på hydrokarbonene, som vi er vant til å treffe i form av olje, for eksempel, bortsett fra at det lille hydrogenatomet er byttet ut med fluor. Hverken hydrokarboner eller fluorkarboner har noe særlig til overs for vann, men hydrokarboner liker de fleste av de andre vannhatende stoffene.

I hydrokarbonene kan elektroner svinge seg frem og tilbake mellom karbonatomene og hydrogenatomene, og når to overflater kommer i nærheten av hverandre, kan elektroner i flere molekyler begynne å svinge i takt. Denne trivelige dansingen vil de gjerne fortsette med, så man må bruke litt kraft for å få dem fra hverandre igjen.

Fluoratomene har mer muskler enn de små hydrogenene. Når de først har fått tak i et elektron, så holder de det godt fast. Kommer en annen overflate og vil danse, så sier fluoren at nei du, dette elektronet er alt for lite for dans og moro. Så blir det ingen fest. Fluorkarbonene er en skikkelig asosial gjeng.

Rosineffekten

Om du ikke allerede har prøvd det, er du nødt til å gjøre dette neste gang du drikker farris: Slipp en rosin oppi glasset. Rosinen blir liggende på bunnen av glasset en stund mens det dannes bobler nedi rynkene i skallet. Når boblene har blitt store nok, løfter de rosinen opp til overflaten der den blir liggende og duppe og snurre litt. Boblene vil etterhvert sprekke slik at rosinen detter ned igjen, der den samler opp nye bobler, og det hele gjentar seg. Har du flere rosiner i glasset får du en hel liten rosinballett. Bedre enn TV.

20130709-070755.jpg

Klare til avgang!

Overflaten til rosinen er av den typen som ikke er spesielt glad i vann. I farrisen svømmer mange CO2-molekyler som gjerne vil bli til gass, men synes det er vanskelig å dytte bort vannet for å lage en boble. På rosinoverflaten er det mange groper og sprekker der gassen trives. Gassmolekylene synes nemlig det er vemmelig å være den som sitter ytterst i bobla når det betyr at de må være inntil vannmolekylene, men er de er helt fornøyde med å være ytterst når de kan kose seg på rosinflateveggene i en sprekk. Så lenge det bare er noen få molekyler som må ta drittjobben i sprekkåpningen, går det greit å lage en boble. I farrisen er CO2-molekylene såpass desperate etter å unnslippe at når en boble først er dannet, vil den fortsette med å vokse til den er stor nok til å stige til overflaten.

Legger du en vanndråpe på en vannhatende overflate, vil en kile av luft eller gass skli innunder kantene av dråpen og løfte den opp. Allikevel er midten av dråpen i kontakt med underlaget, og det skal littegrann kraft til for å få dråpen av. På den superhydrofobe Ultra Ever-Dry sklir vanndråpene av så lett som bare det. Dette skyldes rosineffekten. Vidunderbelegget består av kantete nanopartikler med massevis av groper og hulrom mellom, der fiendtlige molekyler ikke lar vannet slippe inn. En dråpe som faller på dette underlaget vil bare være i kontakt med underlaget på noen få, ørsmå topper. Ellers flyter den på en pute av luft. Derfor skal det bare en nesten umerkelig helning til for at dråpen skal trille av.

Dersom nanopartiklene er dekket av fluorkarboner, får hverken vann eller olje muligheten til å feste seg på overflaten. Farvel, klesvask! Problemet med Ultra-Ever Dry er at belegget gir alle overflater en matt, hvit farge. Dette har selvfølgelig også en fascinerende årsak. Men det får vi spare til en annen gang.


3 kommentarer

Klesvaskfysikk

klesvaskJeg er mamma og jeg blogger, så i dag tar jeg for meg et skikkelig mammabloggtema. Hva er det egentlig som foregår der inne i vaskemaskinen?

To typer møkk

Sånn kort fortalt, så finnes det to typer møkk.

Den ene typen elsker å være sammen med vann, og er derfor ikke noe å bry seg om. Hold plagget under springen og skyll bort.

Den andre typen møkk er den som hater vann. Den er verre. Den vil klamre seg fast til klesfibrene når vannet kommer i nærheten.

Stoffer som hater vann er glade i olje. Derfor er olje et godt middel for å løse opp møkk. Dette kan være fint for sarte barnerumper, men ikke fullt så bra for klærne dine ettersom du ikke får bort olja fra klærne etterpå. Det du trenger er noe som kan lokke møkka vekk fra klesfibrene og holde den i vannet slik at den kan skylles bort og vekk.

Kravstore rumpetroll

Hovedingrediensen i de fleste vaskemidler er en type molekyler som heter surfaktanter. Surfaktantene ligner litt på treåringer: De har veldig sterke og selvmotsigende krav. Surfaktantene er bygget opp som små rumpetroll, med et hode som elsker å være i vann, og en hale som lider av alvorlig vannskrekk. Når surfaktantene blandes ut i vann, legger mange molekyler seg kinn mot kinn med halene pekende inn mot midten av en kule. På denne måtene får hodene bade mens halene holdes tørre. Disse små vannelskende klumpene sprer seg villig utover i vannet.

Redde rusk får god hjelp

For å få klærne rene må møkka først løsnes fra underlaget. Dette gjør vi ved å varme opp vannet (olje blir for eksempel mer flytende når den er varm) og ved å bevege på klærne i vannet, så møkka ristes løs.

Når små biter av møkk så er løsnet, har de det helt fryktelig der ute i vannet. Det er her såpa kommer inn i bildet. Små rumpetroll som befinner seg i nærheten fester seg med den vannhatende halen på overflaten av den lille møkkebiten, mens det vannelskende hodet stikker ut. Kinn mot kinn danner rumpetrollende et vannelskende skall rundt rusket, som kan flyte avgårde uten å måtte befatte seg med noen av de ekle vannmolekylene.

Enkelt og greit, dette er hovedprinsippet bak de aller fleste vaskemidler.

I den tynne filmen som blir til veggen i såpebobla ligger to lag med surfaktant-rumpetroll med halene ut i lufta og hodene inn mot et tynt lag med vann. Kjempesåpebobler trenger i tillegg noen molekyler med glyserol som kan legge seg mellom surfaktanthodene og passe på at ikke de små vannmolekylene ikke kan komme seg ut i lufta.

I den tynne filmen som blir til veggen i såpebobla er et tynt vann lag stengt inne mellom to lag surfaktant-rumpetroll som stikker halene ut i lufta. Kjempesåpebobler trenger i tillegg noen molekyler med glyserol som kan legge seg mellom surfaktanthodene og passe på at ingen av de små vannmolekylene unnslipper.