Anja Røyne

Fysiker


Legg igjen en kommentar

Kavliprisen til AFM!

Vi har fått en kjendis på laben. Altså: Den har vært der siden i vinter. Men i går ble det annonsert at oppfinnerne av AFM, Atomic Force Microscope, blir tildelt årets Kavlipris i Nanoteknologi. Hurra!

Dette kan vi feire med et AFM-bilde av overflaten på et mineralkorn som har vokst på innsiden av en gammel gruvegang i Røros. Her ser vi mikrometer-tykke lag av mineralet, og artige strukturer på nanometerskala.

Skjermbilde 2016-04-14 14.05.50

Instituttet har lagt ut en video på Facebook der jeg peker og prøver å forklare hva denne maskinen egentlig gjør, som du kan se her om du vil forstå mer.


1 kommentar

Nytt leketøy på plass!

Nå er labben enda kulere, for vi har fått en splitter ny AFM. Forkortelsen står for Atomic Force Microscope, noe som muligens kunne oversettes som atomkraftmikroskop, men det har ingenting med atomkraft (kjernekraft) å gjøre. Det AFM-en gjør er å måle kraften mellom en spiss nål og en overflate. Og om nålen er spiss nok, og det ikke er vibrasjoner i rommet og man stiller inn alle parametere riktig og så videre og så videre, så kan man gjøre dette så nøyaktig at man kan få et bilde av enkeltatomer på overflaten. Derav atomkraft – krefter mellom atomer.

I første omgang skal vi bruke det til to ting:

  1. «Ta bilder» av mineraloverflater. Vi kan gjøre eksperimenter inne i AFM-en, der vi har mineraler (enkeltkrystaller, altså) i en væske og ser på hvordan overflaten forandrer seg på nanoskala når den vokser eller løses opp. Eller vi kan ta bilder av overflater før og etter at vi har gjort ting med dem i andre eksperimenter.
  2. Måle krefter mellom overflater. Da bruker vi ikke en tynn nål, men limer fast en partikkel på «pinnen» nålen vanligvis er festet til. Det er dette jeg har gjort i eksperimenter som jeg har skrevet om på bloggen tidligere (her, for eksempel).

De siste eksperimentene gjør vi for å finne ut mer om hva som skjer når møtet mellom vann og stein gjør at steinen forandrer egenskaper. Nå er det ikke bare jeg som gjør eksperimentene: En PhD student, som allerede har gjort noen av dem i København, skal begynne på vår maskin neste uke. Og på slutten av året kommer en postdoc som skal gjøre lignende ting.

Vi fikk penger til å kjøpe denne utrolig kule maskinen som del av et ERC-prosjekt som Bjørn Jamtveit, professor ved PGP, fikk nylig. Det lønner seg altså å blande seg inn i store prosjekter. Før jul var jeg og Francois Renard, fransk professor tilknyttet PGP, på en tre dagers reise i Tyskland der vi besøkte forskjellige AFM-produsenter og fikk demonstrert utstyret deres og de alle gjorde sitt beste for å overtale oss til å kjøpe deres maskin. Etterpå  måtte vi skrive en utlysning til et offentlig anbud og vurdere tilbudene vi fikk. Ganske stressende og kompliserte greier, men heldigvis får vi glimrende hjelp fra fakultetet til slike prosesser (jeg gjorde jo det samme for SFA-en, så jeg begynner å bli dreven).

Forrige uke var temmelig intensiv og tettpakket med installering, demonstrering og opplæring på alt utstyret. Men nå er det på plass og jeg gleder meg som bare det til å komme i gang med å titte på ting på nanoskala. Med de to instrumentene vi har på labben nå (atomkraftmikroskopet og overflatekraftmikroskopet) kan vi få et ganske utfyllende bilde av hvordan forskjellige overflater påvirker hverandre når de er i kontakt. Jeg skal passe på å få lagt ut noen fancy AFM-bilder på bloggen etterhvert.


4 kommentarer

Dråpefysikk med lego

Vi ville at studentene på denne forskerskolen skulle få gjøre et praktisk eksperiment i tillegg til all kvantemekanikken og molekylærdynamikken. Men det er jo ikke alt vi gjør på labben som så enkelt lar seg transportere til et hotell på Gran Canaria og gjennomføres av 15 studenter på en gang. Heldigvis kan man lære mye av å studere dråper.

Utstyr: Utrolig kule, små lommelykt-aktige USB-mikroskop av typen DinoLite. Kalsittkrystaller, mikroskopglass, pipetter, vann, olje, sprit, hansker, skalpeller, og ikke minst tape, lego og lommelykten på mobilen.

IMG_5080

Resultat: Vinkelen mellom dråpen og underlaget varierer ut i fra hva du har hatt på underlaget før. Helt nye overflater av kalsittkrystaller fukter vann utrolig bra. Vinkelen for en dråpe som utvider seg er større enn en som krymper. Når en dråpe fordamper, beveger kontaktlinjen seg innover i periodiske rykk. Observasjoner stemmer overens med simuleringer tidligere i uken, med en del tolkning.

Nå er det snø på toppene her i syden, så det er på tide å dra hjem til vinterferien. Heldigvis er en av veiene til flyplassen fortsatt åpen.

IMG_5100


Legg igjen en kommentar

Ispels-nytt

is

Det er den tiden av året igjen. For to år siden skrev jeg et blogginnlegg om ispels, som er et femomen som de færreste har lagt merke til, men som kan dukke opp på en grein nær deg når kuldegradene kommer snikende. Det ser ut som hvitt tynt hår, omtrent som mugg, men det er is. Veldig kult.

Og nå kan jeg altså dele en forskningsnyhet om ispels. Den kom i sommer, men da passet det ikke så bra å snakke om is. Artikkelen Evidence of biological shaping of hair ice ble publisert i Biogeosciences. Forfatterne har studert ispels som dukker opp og forsvinner fra grener over en periode på to år (for et koselig prosjekt!), og påpeker en viktig ting: Det er rart at disse lange hårene ikke smelter sammen og blir til større krystaller, når de er inntil hverandre over lang. Det pleier nemlig krystaller å gjøre når de er veldig små, inntil hverandre og dessuten ikke så langt fra smeltepunktet sitt.

Jeg vil anbefale alle å lese artikkelen (den er åpent tilgjengelig) for å se hvilke fine eksperimentener disse forskerne gjorde for å komme til bunns i saken. Jeg skal nøye meg med å hoppe til konklusjonene:

  1. Ispels dannes fordi vannet som er stengt inne i de små hulrommene i greina ikke klarer å fryse, men det fryser når det kommer ut i lufta. Frysingen gjør at vannet suges ut av greina og «håret» vokser. Dette var som jeg trodde, og jeg er glad for å se at jeg ikke tok helt feil. Men, dette er ikke hele historien, for
  2. Ispelsen dannes bare om det er en bestemt sopp til stede. Ha! Så det er nesten som mugg. Soppen lager nemlig et stoff som blander seg inn i isen og gjør at iskrystallene ikke smelter sammen. Det er en krystallisjonsbrems. Når iskrystallen først er dannet, så gjør dette sopp-stoffet at krystallen ikke klarer å forandre på overflaten sin før den til slutt smelter eller fordamper og forsvinner.

Det er faktisk nesten uhørt i naturen å lage så lange krystaller. De kan være 10 000 ganger lengre enn de er brede. Det er ikke umulig at materialforskere vil prøve å fra nytte av disse soppstoffene, eller noe som ligner, til å kontrollere formen på andre typer krystaller. Dermed ble noe som var et koselig naturfenomen plutselig high-tech. Et nydelig eksempel på at det lønner seg å være nysgjerrig uten å bry seg så mye om hvor man ender opp til slutt.


Legg igjen en kommentar

Fint glass

Er ikke denne fin?IMG_4572
Det er utrolig kult å få ting laget. Hos oss har vi noe så flott som en glassblåser. Jeg gikk til ham og sa at jeg trengte en slags flaske, som jeg kunne koble til en vakuumpumpe for å få lufta ut av vannet, og så skulle jeg kunne tømme vann ut gjennom en tut som skulle være så stor. Og så fikk jeg den fine der. Ny favoritt på labben!


2 kommentarer

Lukten av regn

Det har regnet litt for mye de siste dagene, men du vet hva jeg mener: Lukten som oppstår etter en ettermiddagsskur på en ellers solfylt dag. Det lukter sommer og varm asfalt. Kan dette forklares vitenskapelig?[/caption]

Nyheten dukket opp en dag i januar, men jeg ville spare historien til det ble sommer. Nå passer det bra.

Eksperimentet er nydelig, av den typen som alltid gir meg lyst til å jobbe med dråper og høyhastighetskameraer. To forskere ved MIT har sluppet vanndråper ned på tørre overflater som ikke er helt glatte, men er fulle av ørsmå hull eller porer, sånn som jord er. I studiet har de brukt både tørr jord og enklere porøse materialer.

Når dråpen treffer overflaten, er det en del luft som ikke rekker å unnslippe til sidene. Den blir fanget under dråpen, der den deler seg opp i flere små bobler. Boblene sitter fast i underlaget. Når vannet i dråpen trenger nedover i jorda, presses luft opp fra jorda til boblene, slik at disse vokser. I mellomtiden kommer overflaten på dråpen lengre og lengre ned, siden vannet forsvinner ned i underlaget. Når toppen av en boble er på høyde med overflaten av dråpen, sprekker boblen, og på samme måte som mye energi frigjøres når en ballong sprekker (BANG!) så fører boblesprekkingen til at ørsmå vanndråper slynges opp i lufta. Disse dråpene er så små at de ikke faller ned, men blir hengende i lufta.

Disse bittesmå vanndråpene består ikke bare av det vannet som falt ned på jorda i utgangspunktet. Luktstoffer som svevde rundt i lufta inne i jorda kan klistre seg fast på vanndråpene og bli med dem på ferden. Når du får en eller flere av disse mikrodråpene i nesa, merker du tilstedeværelsen av oljen petrichor, som lukter som regn på en solvarm bakke.

I artikkelen sin påpeker MIT-forskerne at denne prosessen, der regn får materiale fra bakken til å bli slynget opp i lufta, der det blir hengende en god stund, også kan få virus til å spre seg i lufta (ikke så hyggelig). Det har frem til nå ikke vært så lett å forklare hvorfor man ofte finner slike aerosoler, altså små partikler i atmosfæren, som inneholder mikroorganismer eller andre saker som hører til i jorda. Nå viser det seg at disse kan ha bli dannet i regnvær.

Forskerne jobbet seg systematisk gjennom en rekke forskjellige overflater og dråpehastigheter, og konkluderte med at aerosoler kan dannes i «lett til moderat regnvær» på jord som er mer finkornet enn sand og dessuten ganske hardpakket. MIT har laget en fin film om eksperimentet, bare se her:


4 kommentarer

Hurra!

Noen husker kanskje at jeg fikk en artikkel refusert i høst? Artikkelen tar for seg resultatene fra AFM-arbeidet jeg har drevet med i København og på forskningslabben til odontologene (se her, her og her). Det tok tid å manne seg opp for å sende den igjen, men jeg fikk endelig gjort et for et par uker siden, rett før fristen gikk ut. Og i dag (allerede!!) kom beskjeden:

Dear Ms. Røyne:

Thank you for the manuscript submission entitled «Repulsive hydration forces between calcite surfaces and their effect on the brittle strength of calcite bearing rocks» [Paper #2015GL064365] to Geophysical Research Letters. I am now ready to accept your manuscript, after some very minor revisions below.

Leste jeg riktig? Jo! Det står faktisk I am now ready to accept your manuscript. Haha!

Og, desto bedre, «very minor» endringene er faktisk latterlig små. Bytt ut tre ord, sett inn en enhet som mangler, og dobbeltsjekk forkortelsene av tidsskrift-navnene i referanselisten.

🙂

Jeg har feiret med is, og ute er det blomster.

IMG_4088Siden jeg startet dagen med 17. maifeiring i barnehagen fortsetter jeg feiringen med reinstallering av datamaskinen på labben, som selvfølgelig er litt nedtur.

IMG_4090Mens jeg ser linjer bevege seg langsomt over skjermen prøver jeg å bygge en boks til instrumentet mitt. Av isolasjonsplater.

IMG_4091

Det er rart med det, en sånn publikasjon er jo kulminasjonen av mange, mange måneders arbeid og virkelig prikken over i-en i forskningsarbeidet. Dette tidsskriftet er heller ikke et hvilket som helst et og jeg har aldri greid å publisere noe der før. Men hva gjør man egentlig? Det er grenser for hvor mye jubel man kan drive med midt i arbeidsdagen.

Uansett.

🙂


1 kommentar

Ting på plass!

Det viser seg at desto viktigere ting er, desto vanskeligere blir det å blogge om det. Dette har ført til uvant lite blogging i det siste. Nå er det på tide å gjøre noe med det, så her kommer en oppdatering fra labben.

I slutten av mars ble apparatet mitt levert. Labben var klar... klar nok. Ting fungerte. Det ble noen hektiske dager med foredrag, møter, middager og fikling med ting som skulle justeres og limes og tilpasses i siste liten.

Siden det var så viktig å få alt på plass før leveransen, ble det til at jeg ryddet alt annet til side en stund. Etterpå dukket alle de andre tingene opp. Derfor ble det en hektisk måned som endte i en hesblesende uke, fulgt av noen flere hektiske uker der jeg måtte gjøre alt det andre som jeg egentlig skulle ha gjort.

Det ser lovende ut!

Professor Jacob Israelachvili, SFA-ens «far», tester utstyret. Det ser lovende ut!

Apparatet «mitt» er altså et Surface Forces Apparatus, som brukes til å måle krefter mellom overflater når de er mindre enn noen hundretalls nanometer fra hverandre. Det er disse kreftene som sørger for at ting henger sammen – eller ikke henger sammen. Jeg har tenkt å bruke det til å finne ut av hva som bestemmer hvorvidt mineraler klistrer seg til hverandre, sånn at vi får solide materialer, eller dytter hverandre vekk og får ting til å sprekke opp.

I apparatet monterer vi opp to flater av ønsket materiale, 2-3 mikrometer tykt, med sølv på baksiden. Disse er limt på hver sin buede glassbit. Når overflatene er nær hverandre og vi sender hvitt lys gjennom den, oppstår det et morsomt fenomen. Det av lyset som kommer seg gjennom den første sølvflaten uten å bli reflektert tilbake til lampen, vil bli reflektert frem og tilbake mellom de to speilene. Dersom bølgelengden til dette lyset er slik at et helt antall av halve bølger får plass mellom speilene, vil lyset forsterkes ved hver refleksjon. Til slutt er det bare disse bestemte bølgelengdene som slipper gjennom, og alt annet blir sendt tilbake. Lyset som har sluppet gjennom begge overflatene sender vi inn i et spektrometer, der lys med forskjellig bølgelengde blir sendt i forskjellige retninger. Så sendes lyset til et kamera, og om vi har gjort ting riktig får vi et bilde som ser slik ut:

IMG_3901

Hipp hurra! Så er det bare å sende bildet til Matlab og beregne avstander og slikt. Jeg greier ikke forklare dette mer skikkelig i løpet av et trøtt blogginnlegg, men om dere følger bloggen videre vil det nok dukke opp flere liknende bilder i fremtiden. Når man bare har sett og hørt noe mange nok ganger, kan man begynne å synes at man forstår det. Så hold ut.

Alt har selvfølgelig ikke gått helt på skinner etter leveransen, men det kommer seg.

For eksempel: Jeg hadde tre motorer og tre kontrollkort. Hvor skal jeg sette ledningene? Jeg gav elektronikklabben kortene og det jeg kunne finne av manualer og bad dem om å putte det i en boks som jeg kunne sette ledning i og slå på, og så skulle det fungere.

Det var ikke riktig så lett. I det hele tatt. Men nå funker det, og det er bare å sette seg ned å skrive programmet for å styre motoren. Det er nok heller ikke så lett, men det kommer til å gå det også .

Den FUNKER!!

Den FUNKER!!

Det som er litt skummelt med sånne store tekniske prosjekter er at jeg synes jeg kan bli så overveldet av de praktiske tingene som skal gjøres at jeg mister målet litt av syne. Nå er vi snart der at vi kan begynne å gjøre eksperimenter. Får vi gjort noe vettugt? Legg merke til at jeg sier vi, for nå er det ikke bare jeg som skal jobbe med dette prosjektet, det er også to doktorgradsstudenter. Det er ille nok om jeg roter meg bort og ikke får til noe, men det er helt uaktuelt at jeg skal rote bort årevis av andre personers liv til å gjøre ting som ikke funker. Så det er bare nødt til å bli bra.


3 kommentarer

Labdag med munnbind

Vanligvis rusler jeg rundt i vanlig tøy på labben, men noen aktiviteter krever ekstra utstyr, og i dag var en sånn dag.

Først gjorde vi noe jeg har gruet meg til kjempelenge, og det var å kløyve glimmer.

De fleste har vel lekt med kråkesølv. Det er et slags flakete mineral som man finner i stein noen steder. Kråkesølv, eller glimmer, består faktisk av flak, eller lag, helt ned på atomnivå. Om man bare starter med store stykker, kan man, om man er forsiktig nok, trekke disse lagene fra hverandre og få store stykker som er helt atomært flate. Det er både tøft og nyttig.

Glimmerflak henger og venter på å bli dratt i. Klesklypen tok jeg med hjemmefra.

Glimmerflak henger og venter på å bli dratt i. Klesklypen tok jeg med hjemmefra.

Dessverre er det også ganske vanskelig, og det krever tålmodighet og mye flaks. Så i dag har vi kløyvd og kløyvd og kløyvd. Jeg var pessimistisk og hadde satt av tre dager til herligheten, men det klarte seg heldigvis med tre timer.

Disse glimmerflakene som skal være atomært flate må selvfølgelig også være rene. Derfor må all bearbeidingen skje inne i en spesiell arbeidsbenk der luften strømmer ned og ut etter først å ha passert gjennom et partikkelfilter.

Kløyvingen gjør at det løsner massevis av ørsmå glimmerflak som så blir blåst ut på oss. For å beskytte oss mot disse må vi bruke vernebriller og ansiktsmaske med partikkelfilter (som er klam og ubehagelig og dessuten gir merker i ansiktet som man må gå rundt med etterpå, kjempekult). I tillegg må vi ha på hansker (for å ikke møkke til prøvene) og labfrakk for å ikke bli fulle av glimmerfnuss.

Når vi har greid å lage en stor nok og flat nok bit (2-3 tusendels millimeter), skjærer vi den løs med en glødende platinumtråd.

Dagens glimmerfangst, med platinum-glimmerskjæremaskin i bakgrunnen. Og saks.

Dagens glimmerfangst, med platinum-glimmerskjæremaskin i bakgrunnen. Og saks.

Etter at denne morsomme jobben var ferdig var det tid nok til å kaste i seg en sen lunsj før vi skulle opp til rentrommet for opplæring. Neste skritt er nemlig å ta med seg glimrene våre dit for å legge et 55 nanometer tykt lag med sølv oppå. Rentrom er seriøse greier, så da var det å trekke i heldekkende støvfri dress, spesielle sko med skotrekk, hårbind, munnbind og hansker. Jeg misunner ikke de som jobber i rentrom hver dag.

Rentrom-selfie

Rentrom-selfie


1 kommentar

Det blir fint på labben!

I september ryddet jeg, En hel lab skulle gjøres klar etter en 15-20 års bruk og settes klar til nye oppgaver. Vegg ble reparert, gammelt støv vasket ut og nå har vi begynt å fylle den opp med leketøy. Det er på tide med en oppdatering.

Hovedpersonen på labben blir en SFA2000, et Surface Forces Apparatus. Selve SFA2000 har enda ikke ankommet fra USA, men siden dette er et instrument det bare finnes noen få av rundt i verden er det ikke bare å bestille en dings og sette den på bordet. Under er noen av delene jeg har kjøpt og satt opp og begynt å teste:

– optisk dempet bord (det blanke) ble hentet fra kjelleren. Sterke karer hjalp til med flyttingen. En annen hjelpsom kar fra verkstedet hjalp meg med å trekke slange fra trykkluftuttaket på veggen for å koble til bordet. Dette må man ha for at ikke eksperimentet skal ødelegges av vibrasjoner.

– Den lille dingsen med rød nese bakerst til høyre på bordet er en lampe som skal gi hvitt og helt stabilt lys.

– Optisk ditt og datt på bordet ligger og venter på ditt og datt som ikke har kommet enda. Da skal jeg montere opp linsene mine og se om jeg klarer å fokusere lyset på riktig sted.

– Den mørkeblå «kassa» oppå et lite bord oppå bordet er et spektrometer, som man bruker til å splitte lyset i alle bølgelengdene sine. På baksiden sitter et veldig fancy kamera som er vannkjølt. Jeg koblet på vannledningene i dag (blå greier som går ned til vannsirkulatoren under det hvite bordet), men den ene koblingen lekker litt fortsatt, og det går jo ikke. Bordet til spektrometeret har verkstedet laget for meg.

– PCen er selvfølgelig kjøpt inn spesielt for formålet med et par spesielle kort i seg. På den ene skjermen kan man se signalet fra spektrometeret. I tillegg kommer jeg til å skrive en del programvare for å kjøre eksperimentet og analysere data.

– labfrakk nonsjalant slengt over stolryggen, såklart.

IMG_3778

Rett ovenfor bordet til SFA-en har vi satt en AFM, som er et Atomic Force Microscope. Den skal vi bruke til å avbilde overflater på nanoskala. Denne har ikke jeg kjøpt, men det var ingen som brukte den, så jeg hentet den opp fra kjelleren. Blytungt betongfundament + steinplate (for å unngå vibrasjoner) fant jeg på en annen lab.

Selve AFM-en er liten og nett (den røde og svarte lille sylinderen), men den har en kontrollboks (hvit greie under benken) som er ganske stor.

IMG_3779

Mikroskop er også fint å ha. Dette fant jeg i 4. etasje, det ble kjøpt til et annet prosjekt for mange år siden og var nå stort sett ubrukt. Her er eksperiment in action (det står IKKE RØR på den grønne lappen, veldig viktig). Kameraet på mikroskopet er programmert til å ta bilder med jevne mellomrom, som man så kan sette sammen til en film.

IMG_3780

Her har vi kjemibenken, med pH-og ioneprobe som er koblet til datamaskin, presis labvekt, et nytt rørestativ og ymse annet stæsj.

Stolen er visst litt skral.

IMG_3781

I dette hjørnet har vi fått inn en LAF, altså en Laminar Airflow Bench. Da den ble levert var jeg ganske engstelig for om den skulle komme seg inn gjennom døren. Det gikk såvidt, men ikke uten at jeg måtte mobilisere folk for å flytte noen enorme skap fra gangen på veldig kort varsel. Nå står den der og går nok ingen steder med det første.

LAF-benken trekker inn luft gjennom et partikkelfilter i toppen og slipper den ned i luftstrøm uten turbulens, slik at ingen støvkorn fra utsiden kan bli trukket inn i arbeidsbenken. Denne skal vi bruke til å jobbe med veldig rene ting, både for å gjøre klar overflater til SFA-eksperimenter, og til å lage mikrofluidikk-celler som brukes på labbene i kjelleren. Den er ikke helt klar ennå, for verkstedet skal montere en spin-coater og en varmeplate med avtrekk i den ene enden.

IMG_3782

Det som er ekstra hyggelig er at det ikke bare er meg på labben lengre. Nå er vi fire stykker som er inn og ut og driver med ymse ting her. Ikke bare er det trivelig med folk, men det gjør jo også at ting blir gjort både fortere og bedre enn om jeg skulle ha drevet med alt helt selv. I morgen kommer en rørlegger som skal legge opp rør til nitrogen. Det er ofte kjekt å kunne blåse litt med nitrogen så det skal vi kunne gjøre fire forskjellige steder i rommet.

Se så fint det blir!

IMG_3783