Anja Røyne

Fysiker


Legg igjen en kommentar

Et fjell av salt

img_6675

Vitenskapsfolk og en liten del av et stort fjell av massivt salt.

Vann har fordampet fra Dødehavet i tusener på tusener av år, og lagt igjen et flere kilometer tykt lag av salt. Etterhvert som tiden går blir saltet tynget ned av salt, sand og støv som ligger over det. Og ettersom salt har lavere tetthet enn de fleste andre mineraler (på samme måte som fett har lavere tetthet enn vann, og vil legge seg øverst i suppa) får saltet lyst til å komme seg oppover.

Det har det klart. I sørenden av Dødehavsdalen har saltet tytet opp og ut gjennom sprekker i bakken, dannet av jordskjelv, og dannet et fjell som heter Sodom. Hørt om Sodom og Gomorra? Visstnok kan man se den stakkars hustruen til Lot her, blant alle de andre saltstrukturene.

Sodomfjellet tyter fortsatt oppover med omtrent tre millimeter i året. Når det kommer litt regn, løses saltet opp og det dannes huler og merkelige strukturer.

img_6679

Jeg smakte på steinen og den smaker salt. Så det er sant.

Det at salt har en tendens til å tyte oppover er forresten viktig flere steder på jorda, for eksempel i nordsjøen der store saltstrukturer kan ha konsekvenser for hvor man kan og ikke kan finne olje.

img_6685

Utsikt over fordampingsbassengene og til Jordan, fra fjellet av salt. Mineralene som blir utvunnet fra fordampingen blir blant annet solgt til Kina og brukt i kunstgjødsel.


Legg igjen en kommentar

Kjemisk potensiale i nanoporer, svømmetur og en bjørn

Jeg er på konferanse i USA, og overskriften oppsummerer dagens høydepunkter.

Hjemme er det skolestart, barnehagestart, fotballstart og korpsstart. Jeg er i New Hampshire og tenker på deformasjon av stein. Dette er en såkalt Gordon-konferanse, som holdes i en rekke fagfelter og har et veldig fint format: Tre foredrag på en time hver om morgenen, lunsj, fritid (der man sitter i sola og diskuterer vitenskap, eller drar og svømmer i en varm innsjø, som jeg fikk gjort i dag), deretter to timer med poster-session (se på og diskutere plakater som de som ikke holder foredrag har laget om forskningen sin), middag, og så to timer foredrag fra 1930 til 2130. Det kan være bittelitt vanskelig å holde seg våken på de siste foredragene. Ellers bra.

IMG_6329

Proctor Academy, nydelig sted å ha konferanse.

Tema for konferansen er «Rock Deformation», som altså betyr hvordan stein beveger på seg: Hvordan foregår store og små jordskjelv, hva vet vi egentlig om friksjon, hvordan kan man få små og store jordskjelv av å pumpe vann ned i bakken, hva skjer med krystallene i is som flyter og i stein som flyter dypt nede i jorda, og sånt. Noe som er litt rart er at det var et stort jordskjelv i Italia i natt som jeg ikke har hørt et ord om i løpet av dagen. Det henger kanskje sammen med at det er lite snakk om å forutsi jordskjelv. Det finnes folk som jobber med det, men det er vanskelig, og jeg er usikker på om noen av dem er her. For denne gjengen handler det mer om å forstå prosessene i jorda.

Jeg er så heldig å være invitert hit til å holde foredrag. Dette gjør at jeg får betalt reise, eget rom, slipper å stå og henge ved en plakat, og fikk bruke en hel time på å fortelle og svare på spørsmål om hva jeg driver med. Når jeg i tillegg fikk snakke mandag morgen, slipper jeg å være stresset resten av uka, og får masse tid til å diskutere med folk som gjør relevante ting. Det jeg har snakket om er hva som skjer mellom overflater på nanoskala, og det er det mange som er interessert i.

IMG_6327

Jeg holder foredrag.

Et av dagens høydepunkter var å sitte i sola i pausen og fundere over hvordan det kan gå for seg når korn i stein glir mot hverandre dypt nede i jordskorpen og dette får vann til å strømme fra dypet og opp mot overflaten. Her kan nanoporer, altså vannfylte hulrom som bare er noen få atomer store, være viktige. Kan jeg klare å finne ut noe om dette med mine eksperimenter?

Høydepunkt nummer to var at jeg rakk å kjøre opp til den lokale innsjøen og ta et bad i slutten av pausen.

Og høydepunkt nummer en må ha vært at jeg så en bjørn på morgenløpeturen min i skogen. Den var svart, ikke så veldig stor, og gikk vekk fra meg (heldigvis) et stykke unna. Jeg brukte resten av løpeturen på å fundere på hva man skal gjøre om man treffer en svartbjørn på stien. Skal man rygge, spille død, eller se stor og skremmende ut? Etter diskusjoner med de lokale har jeg kommet fram til at man skal prøve å skremme bjørnen, men håper jeg slipper å prøve det i morgen (om jeg i det hele tatt våkner tidlig nok til å løpe).

IMG_6335

Morgenstemning i skogen og ikke en bjørn i sikte.


Legg igjen en kommentar

og vips, så var CO2-en blitt til stein

Om det skal være mulig å nå målet om mindre enn to grader global oppvarming, er det ikke nok å slippe mer CO2 ut i atmosfæren. Vi er også nødt til å fange CO2 og gjemme den bort.

Det er godt kjent for geologer at det finnes prosesser i naturen der CO2 fra atmosfæren reagerer med mineraler som inneholder kalsium eller magnesium og danner nye mineraler, der CO2-en er en del av steinen. Slik CO2-holdig stein finnes mange steder på jorden og det er en stabil og trygg måte å oppbevare CO2 på. Spørsmålet er imidlertid hvor lang tid denne prosessen tar. Stein i naturen kommer ikke med en detaljert beskrivelse av hva som har skjedd med den og når. Geologiske prosesser tar stort sett svært lang tid.Om vi kan se at en stein har reagert med store mengder CO2, og det har gått «relativt fort», kan vi ikke egentlig si om det er noen år, noen tiår, noen hundreår eller noen tusen år. For alt dette er bare for øyeblikk å regne i den geologiske historien.

Av denne grunnen er det mange som gjør eksperimenter, og numeriske simuleringer, av hva som kan skje når man lar CO2 reagere med stein. Vil det oppstå sprekker som slipper CO2-en lengre inn i materialet og dermed lar reaksjonen går fortere? Eller vil det dannes mineraler i hulrommene nærmest der hvor man pumper inn CO2, slik at steinen blir helt tett og man ikke får inn mer?

Selv om man kan lære mye på labben og i datamaskinen får man ikke det endelige svaret før man har prøvd. Og det satte noen forskere i gang med på Island i 2012. Her har de injisert CO2 i basalt, som er den mørke vulkanske steinen man finner på Island og mange andre steder på jorda – omtrent ti prosent av jordas tørre overflate og mesteparten av havbunnen. Noen av mineralene i basalt inneholder kalsium og kan løses opp forholdsvis lett.

8986106246_6e2ce56621_z

Svartifoss på Island renner over søyler av basalt, laget av naturen helt på egenhånd. Bilde: Szecsa/Flickr/CC commons license.

Forskerne i Carbfix-prosjektet blandet ut CO2, og senere en blanding av CO2 og hydrogensulfid (siden det ofte er vanskelig å skille ut ren CO2 i industriprosesser hadde det vært fint å kunne kvitte seg med blandet gass) i vann, injiserte det omtrent 500 meter ned i bakken, og tok prøver av vannet fra samme dybde i en annen brønn 70 meter lengre bort. Og her kommer en skikkelig geologi-industri-klima-gladhistorie:

Mesteparten av den injiserte CO2-en kom ikke fram til den neste brønnen.

Beregninger viste at etter to år var 95% av den injiserte CO2-en blitt til stein.

Er det trygt? Ja, det skulle man tro. CO2-en reagerer med kalsium og danner kalsitt, som er et mineral man finner i kritt, kalkstein og en del skjell. Det var kalsitt i basalten allerede før injeksjonen av CO2. Reaksjon med det sure CO2-vannet gjorde at denne først ble løst opp, og deretter felt ut igjen. Det at det var kalsitt til stede fra før betyr at vannet som vanligvis finnes i denne steinen ikke er surt nok til å løse opp kalsitt. Så når den først er der, blir den værende.

CO2-en ble blandet ut i vann, istedenfor å bare pumpes ned som gass under trykk. Dette var for å unngå mulige utslipp av gass til overflaten. Det hjelper jo lite å gjøre en stor innsats for å dytte CO2 ned i bakken om den bare kommer opp igjen. Konsentrasjonen av CO2 i vannet er for liten til å danne gassbobler nede i brønnen. Så selv om ikke all CO2-en skulle bli til stein, ville den fortsatt bli værende i vannet nede i dypet.

Det å bruke masse vann til å bli kvitt CO2 kan høres ut som en dårlig idé. Rent vann er en knapp ressurs på jorda. Heldigvis sier forskerne at man kan bruke sjøvann i denne prosessen. Da blir det et mindre problem.

Dette er bare en av flere studier som viser at ulike former for geologisk lagring av CO2 kan være trygt. Det som gjenstår nå er incentiver for å faktisk fange og lagre CO2. Dette koster selvfølgelig penger, og ingen vil begynne med dette bare utav sin godhet. Nå er det økonomene sin tur – kom igjen, scenen er deres.


Legg igjen en kommentar

Mennesket som geologisk drivkraft

Her er det geologiske kretsløpet:

Stein blir til når sedimenter blir begravet og utsatt for høye trykk og temperaturer. Platetektonikk og vulkanisme presser stein opp til jordas overflate. Her blir steinen forvitret (kjemisk endret i møte med vann) og erodert (slitt ned) av vann, vind og is. Erodert materiale transporteres (av vann, vind og is) til havbunnen der det med tiden blir begravet og igjen blir til stein. Og så videre.

De geologiske drivkreftene som opererer på jordas overflate er altså vann, vind og is.

Og mennesker.

Her kommer noen tall

Det er vanskelig å finne de riktige tallene når man skal få med seg alt som skjer på jorda, men i følge Hooke (1994) frakter elvene 14 milliarder tonn løsmasser til havene hvert år.

Til sammenligning flytter mennesker hvert år 30 milliarder tonn (dette er også data fra 1994) løsmasser rundt på jordoverflaten for å bygge veier og bygninger og for å drive gruver.

30 milliarder tonn er mengden av løsmasser som folk flytter på med vilje. I tillegg fører jordbruk til en enorm økning i erosjon. I 2007 beregnet Wilkinson og McElroy at elvene frakter 21 milliarder tonn “naturlig” sediment (altså et høyere overslag en Hooke, men 21 er fortsatt mindre enn 30) og 75 milliarder tonn “menneskeskapt” sediment som skyldes jordbruk.

Om vi skulle samle sammen alle løsmassene som mennesker har flyttet på i løpet av de siste 5000 år, ville vi kunne bygge en fjellkjede som er 4000 meter høy, 40 kilometer bred og 100 kilometer lang.

Fortsetter den menneskelige aktiviteten å øke i samme takt som nå, vil vi kunne doble størrelsen av denne fjellkjeden på bare 100 år.

Mountaintop removal mining, West Virginia. Bilde:  Dennis Dimick/Flickr/CC license

Mountaintop removal mining, West Virginia. Bilde: Dennis Dimick/Flickr/CC license

Menneskenes tidsalder på den geologiske skalaen

Mennesker står altså for en betydelig større del av utformingen av jordoverflaten enn hva naturlige prosesser gjør, i dag. Slike tall er noe av grunnen til at en rekke forskere mener at vi nå er inne i en ny geologisk tidsalder, som de vil kalle Anthropocene. Diskusjonen pågår fortsatt om hvilken geologisk signatur som skal markere overgangen fra Holocene: Sporene av radioaktivt nedfall etter prøvesprengningene på 50-tallet? De økte CO2-nivåene i atmosfæren da jordbruket tok fart i Europa rundt år 900? Eller hva med det store fallet i globalt CO2-nivå i starten av 1600-tallet, som skyldes skogvekst etter at nærmere 50 millioner amerikanske bønder døde etter at europeerne ankom?


Legg igjen en kommentar

Jeg er ikke geolog: Mine tanker om naturvitenskapene.

Jeg digger geologi, men jeg er ikke geolog. I dag har jeg vært på geologikonferanse. Jeg var invitert som keynote speaker, noe som selvfølgelig er en stor ære, og ikke så rent lite skummelt som fysikere blant alle disse geologene. Mens jeg snakket om glade og mindre glade atomer på overflater, demonstrerte geologene gang på gang at de har et ordforråd som er mange ganger større enn mitt.

Dette passer godt inn i mitt bilde av de forskjellige grenene av naturvitenskap, som er omtrent slik:

1. Matematikk (egentlig ikke en naturvitenskap): puslespill og filosofering. Vakkert og abstrakt. Krever fryktløshet og en evne til å sjonglere tanker og ikke miste tråden.

2. Fysikk: Forstå de grunnleggende prinsippene for hvordan verden fungerer. Jo enklere, desto bedre. Detaljene kan vi overlate til andre. Krever innlevelsesevne, fantasi og evnen til å ressonere. Man slipper ofte å bry seg tall og om navn på ting.

3. Kjemi: Om hvordan atomer og molekyler oppfører seg mot hverandre. Bruker reglene fra fysikken, men for å kunne forklare virkelige systemer uten å måtte ta alt fra starten hele tiden så lærer kjemikere seg en imponerende mengde nyttige fakta. Kjemi krever nøyaktighet og god hukommelse.

4. Biologi: Fysikk og kjemi anvendt på levende ting. Enormt komplekst. Mye foregår på tidsskalaer som er såpass korte at man kan gjøre eksperimenter eller observere hva som skjer i naturen og lære fra det. For å forsøke å lage system i kaoset går mye av biologien ut på å kategorisere og klassifisere. Derfor er det mange navn å holde styr på. Krever tålmodighet og nøyaktighet og nok dedikasjon til å orke å dra på labben midt på natten for å holde cellene i live.

5. Geologi: Fysikk og kjemi anvendt på alt det ikke-levende som jorda består av. Stort sett kan man bare observere resultatet av ukjente prosesser som har foregått gjennom millioner av år. Geologi er et slags veldig komplisert detektivarbeid for å finne ut av jordas historie, og om man tror man forstår den, hvordan ting kommer til å utvikle seg fremover. Mye kategorier og navn, av samme grunn som i biologien. Krever evne til å se mønstre i kaos og til å huske og uttale vanskelige navn, men man slipper å holde eksperimentene i live.

Siden jeg liker naturen, men er enormt dårlig til å huske navn på ting (og folk, beklager), passer fysikken meg godt. Fysikere kan sysle meg alt, men overlate pirkearbeidet til andre.

Dagens høydepunkt, bortsett fra at jeg fikk unnagjort foredraget mitt:
Henrik Svensen fikk en meget velfortjent pris for formidling. Hipp hurra!
– Spennende foredrag om fjellskred i norske fjorder og om overvåkningen av Åknes og Mannen.

Dagens nedtur: Fly. Forsinkelse. Neste gang tar jeg tog til Stavanger.


Legg igjen en kommentar

Her døde dinosaurene

Højerup kirke, med krittklippen i bakgrunnen. Askelaget fra k-t grensen ligger omtrent halvveis opp på klippeveggen, der det er dannet et overheng på grunn av den hardere bergarten ovenfor.

Stevns Klint. Højerup kirke, bygd av lokal kritt på 1200-tallet, med krittklippen i bakgrunnen. Kirken var egentlig litt større, men en del av kirken og litt av kirkegården raste utfor klippen i 1928 på grunn av erosjon. Askelaget fra k-t grensen ligger omtrent halvveis opp på klippeveggen, der det er dannet et overheng på grunn av den hardere bergarten ovenfor.

I dag har jeg stått på en dansk strand og sett på hvit stein. Det var sol og nydelig. Og lærerikt.

Stevns Klint, en times tid sør for København, kan man se en del av den enorme formasjonen av kritt som ligger under mye av nordeuropa og nordsjøen. Denne ble dannet for melllom 60 og 70 millioner år siden (sånn omtrent), i et grunt, næringsfattig hav der små alger med skjell av kalsiumkarbonat dalte ned mot havbunnen. Krittet, sånn som du skriver med på tavlen med, består av millioner på millioner av disse små algeskallene, som du kan få plass til hundre stykker av på bredden av et hårstrå. Nå er krittlaget noen steder nesten to kilometer tykt.

Når man står nede på stranden er det lett å se at den øverste halvdelen av krittlaget her er anderledes enn den nederste.  Det øverste delen stikker lengre ut, mens den nederste skråner innover så det dannes et overheng. Når vi kommer nærmere finner vi også ut at det nederste laget er så mykt at du kan skrape i det med neglen, mens det øverste er betydelig hardere. Det er derfor den nederste delen er mer erodert enn den øverste.

Sikkerhetsbevisste vitenskapsfolk titter på kritt og iridiumrik leire.

Sikkerhetsbevisste vitenskapsfolk titter på kritt kalkstein og iridiumrik leire.

Mellom de to tykke lagene av kritt er et tynt, tynt lag av mørk brun eller grå leire. Den ble dannet for 66 millioner år siden. Den inneholder unormalt mye iridium. Dette er et element som det finnes mye av i asteroider og meteoritter, men nesten ikke på jordas overflate.

For 66 millioner år siden landet en omtrent 60 km stor asteroide i nærheten av det som i dag er kysten av Mexico. Nedslaget fikk en enorm mengde materiale, både fra asteroiden selv og fra bakken der den landet, til å bli slynget høyt opp i atmosfæren. Der ble det bredt ut over hele jorda som et mørkt teppe. Materialet som etterhvert falt ned på jorda kan vi i dag finne igjen som et mørkt bånd på steder som Stevns Klint.

Og så kan vi se at etter dette laget med utenomjordisk iridium, er mesteparten av de artene som levde på jorda før, borte.

Blant annet dinosaurene.

Her døde dinosaurene.

Her døde dinosaurene.

I havet som senere ble til Danmark var det fortsatt rolige forhold, og algene fortsatte å dale til bunnen og bygge seg opp til store kalklag. Men dyrelivet forandret seg. Og på en eller annen måte gjorde dette også at krittet over dette skillet, som kalles kritt-tertiær-grensen, er sterkt nok til å bygge kirker av, mens krittet under smuldrer opp mellom fingrene dine. Akkurat hva som gir denne forskjellen er det ingen som vet.

Nå må jeg for ordens skyld si (så jeg kan ha mitt på det tørre) at det fortsatt finnes andre hypoteser som kan forklare hvorfor dinosaurene døde ut. Det er vanskelig å konkludere for sikkert om noe som skjedde for 66 millioner år siden.

 

Rettelse, 2. november: Min kollega har gjort meg oppmerksom på at det øvre laget, som altså er sterkt nok til å bygge hus av, burde kalles kalkstein og ikke kritt. Det tror jeg nok er riktig. 


Legg igjen en kommentar

Bloggtips: Katter og geologi

Det er nok sant at det finnes en blogg for alt og litt til. Da jeg googlet noe om forvitring til et konferanseinnlegg jeg skal holde havnet jeg plutselig på denne helt fantastiske bloggen, Geokittehs, som handler om – katter og geologi. De av dere som har litt innsikt i geologiske fenomener vil helt sikkert få lyst til å se på disse innleggene:

Ferris Mewler and Rolly Demonstrate Ophiolite Tectonics

Steep-Angle Subduction Kitteh

Catinental Drift

Om dere ikke skjønte bæret av titlene over, må dere allikevel gå inn på bloggen for å se søte kattebilder. Katter er jo en essensiell del av internettet.

Jeg vil ikke stjele bilder fra andres blogger, så her kommer en søt Creative Commons-katt.


Legg igjen en kommentar

Klimaendringer: Kan naturen lære oss å rydde opp?

Kalde studenter står på sprukne mantelbergarter.

Kalde studenter står på sprukne mantelbergarter.

Det er tydeligere enn noen gang at vi mennesker er i ferd med å gjøre noe dumt med klimaet vårt, og det store stygge trollet heter CO2. I eventyrene kunne man uskadeliggjøre troll ved å lure dem ut i sola så de ble til stein. Hadde det ikke vært fint om vi kunne gjøre noe tilsvarende med vår tids store trussel?

I går fikk jeg bli med en gjeng studenter på feltarbeid på Rørosvidda for å se på nettopp dette: Hvordan naturlige prosesser har lagret store mengder CO2 i form av fast stein. Om vi kan forstå hvordan dette foregår i naturen, kan det kanskje ta oss ett skritt nærmere å kunne lagre deler av den menneskeskapte karbondioksiden på en tilnærmet permanent og trygg måte.

Ustabil stein fra store dyp

Noen steder på jorda kan vi tråkke på stein som opprinnelig ble dannet under jordskorpa. Såkalte mantelbergarter befinner seg vanligvis dypere enn fem kilometer under havbunnen, eller noe sånt som tretti kilometer under tørt land (fordi kontinentskorpa er mye tykkere enn den på havbunnen). Noen ganger får kollisjoner mellom platene i jordskorpa stein fra mantelen til å bli løftet opp på land, og derfor kan vi finne slike steiner flere steder i Norge. Ett av dem er i nærheten av Røros.

Mineralene i disse mantelbergartene ble dannet fordi de var stabile under det høye trykket og temperaturen dypt der nede. Når stein herfra blir fraktet opp til overflaten, trives ikke mineralene så godt lengre. Når så mineralene kommer i kontakt med vann og andre stoffer som sirkulerer nær jordoverflaten, er det en god sjanse for at mineralene løses opp (som sukker i te, bare uhorvelig mye saktere) og at det felles ut nye, mer stabile faste stoffer.

Svart stein blir hvit

Svart fra mantelen, hvit fra CO2.

Svart fra mantelen, hvit fra CO2.

Steinen vi ser rundt oss har stort sett en rødlig farge, men det skyldes forvitring av overflaten. Et kyndig kakk med geologhammeren avslører at steinen på innsiden ser nesten svart ut. Noen steder er det imidlertid hvite områder innimellom det svarte. Dette er karbonater, som man også kan finne i skjell og i kritt.

Karbonatene kom ikke fra mantelen. De ble dannet da vann som inneholdt CO2 reagerte med de ustabile mineralene fra mantelen. Karbonet som er her skaper ikke drivhuseffekt. Det er låst inne i steinen.

Vi finner noen områder der steinen har blitt mer hvit enn svart. De opprinnelige mineralene ligger igjen som svarte korn i alt det hvite. Noen av kornene ser ut som om de har sprukket og blitt presset fra hverandre av det hvite stoffet. Dette kan være viktig, for sprekker er nødvendige for å få reaksjonen til å skje. Akkurat som du smuldrer opp gjæren for å løse den opp i bakebollen, er går omdanningen av steinen raskere jo mindre biter den er i, fordi vannet kommer i kontakt med mer av steinen.

Få svar, mange spørsmål

De svarte kornene er fulle av hvite sprekker.

De svarte kornene er fulle av hvite sprekker.

Man kan lære mye av å observere stein, men i geologien er det ikke mange faste holdepunkter. En interessant observasjon fører til en drøss med nye spørsmål. Når skjedde disse reaksjonene? Hvor lang tid tok det? Var steinen på overflaten eller dypt nede i jorda? Hvilke stoffer fantes i vannet den reagerte med? Hadde jordskjelv fått steinen til å sprekke opp, eller skyldes noen av sprekkene reaksjonen selv? Ble alle sprekkene dannet på en gang, eller skjedde det i flere omganger?

Som grunnforsker kan man aldri forvente å finne hele svaret. Det er bare å ta tak i gåten og begynne å nøste et sted. Forhåpentligvis kommer man fram til noe som andre kan bygge videre på. Om man greier å snakke med ingeniører og andre som er interessert i å gjøre praktiske ting, er det kanskje også mulig å bruke kunnskapen til å finne løsninger, for eksempel på hva vi skal gjøre med CO2-en som vi slipper ut. Det er bare å brette opp ermene og sette i gang.


Legg igjen en kommentar

Jeg kan også redde verden (eller bidra litt, i det minste)

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Verden står på terskelen av en klimakatastrofe, og jeg bruker tiden min på å forske på stein.

Noen ganger føles det fryktelig bakstreversk. Fremtiden er solceller og vindmøller, fortiden er Oljebransjen, som man alltid ender opp med å få et nært forhold til når man driver georelatert forskning i Norge.

Det jeg forsker på er å finne ut hvordan oppsprekking og vann og kjemiske reaksjoner i stein henger i hop. I dag gav Sally Benson, professor ved Stanford, en presentasjon som viste hvorfor akkurat denne type forskning er helt nødvendig for at vi skal klare oss fremover. Dette er hvorfor:

Vi trenger materialer for å produsere fornybar energi

Det hjelper ikke å vite hvordan vi skal høste energi fra sol, vann og vind om vi ikke har de materialene som trengs for å lage solceller og vindmøller på stor skala. En del av de viktigste ingrediensene begynner vi å merke mangelen på allerede. For å finne og produsere disse materialene uten å ødelegge jorda samtidig må vi lære mer om hvordan vann, kjemiske reaksjoner, oppsprekking og biologisk aktivitet henger sammen.

Vi må gjemme unna mye CO2 i hundretusenvis av år

Vi kommer dessverre ikke til å klare å plutselig slutte å produsere CO2. En ting vi kan gjøre mens vi venter på at de fossile energikildene tar slutt, er å dytte CO2-en ned langt under bakken og håpe at den blir værende der i noen hundretusen år. Dette kan vi ikke være så sikre på uten at vi forstår, ja nemlig, hvordan oppsprekking og kjemiske reaksjoner henger sammen.

Skifergass

Rekk opp hånda, hvem vil forske på skifergass?

Ikke jeg egentlig, det er noen skikkelig skitne greier, og jeg vil helst ikke ha noe med det å gjøre.

Men skifergass er stort. Det har fullstendig snudd opp ned på energilandskapet i USA. USA slipper nå ut mindre karbondioksid fordi de bruker gass istedenfor kull. England er kanskje det neste landet som skal i gang med å hente opp skifergass fra berggrunnen.

I skifere er gassen gjemt inne i nanosmå porer, som virkelig ingen forstår noe særlig om hvordan fungerer. Om skifergassproduksjonen, som allerede er i gang, skal foregå uten å forurense alt for mye, er forskere nødt til å finne ut mer om disse systemene.

Forskning er aldri bortkastet!

Så lenge den publiseres. Vi forskere finner ut av hvordan ting fungerer, og så må vi håpe, eller passe på, at kunnskapen blir brukt til det beste for verden.


2 kommentarer

Hvor gammel er jorda og hvordan ble den dannet?

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jorda. Bilde fra Wikimedia Commons.

Jorda. Bilde fra Wikimedia Commons.


Hvor gammel er jorda, og hvordan ble den dannet? Litt av noen spørsmål. Det er en sånne ting som man kanskje tror at noen vet svaret på allerede. Men, som vanlig i vitenskapen, er det ofte forbløffende hvor mye det gjenstår å finne ut. I dag gav Rickard Carlson, som er professor ved Department of Terrestrial Magnetism (imponerende navn) ved Carnegie, en slags oppsummering av hva man har funnet ut i det siste.

Det startet med en eksplosjon

For eksempel: Først var det jo bare masse støv. Ikke sånt støv som du har under sofaen. Mer som enkeltmolekyler. En supernovaeksplosjon «i nærheten» sendte ut en trykkbølge som dyttet dette støvet nok sammen til at det begynte å klumpe seg og henge seg sammen. Man har funnet noe materiale som stammer fra denne supernovaen.

Det ble ganske raskt (av typen ikke mange hundre millioner år) dannet små (noen hundre kilometer diameter) planetbarn. Når planetbarna har blitt så store begynner innsiden å smelte og det dannes en fast skorpe på utsiden. Noen stoffer forsvinner innover mot midten, og noen liker seg best på utsiden. Så kræsjet flere av disse planetbarna sammen og etterhvert ble jorda vår dannet.

Hva er inni jorda?

En av tingene vi faktisk ikke vet er hva jorda består av. Det er sant! Vi har ingen måte å egentlig finne ut av hva som gjemmer seg inne i midten av jorda. Forskere gjør sine beste gjetninger, putter det inn i modellene sine, og ser om de får svar som stemmer med virkeligheten. Hvor mye radioaktive stoffer har vi for eksempel inne i jorda, og hvor mye varme produserer de? Slike spørsmål kan man kanskje få et bedre svar på om man vet mer om hva som dannet jorda i utgangspunktet. Derfor jobber mange forskere for å finne ut hvordan de små planetbarna så ut før de kom sammen og lagde jorda.

Jordas alder

Når det gjelder hvor gammel jorda er, så er ikke det et helt enkelt spørsmål å svare på. Den vokste jo litt etter litt på begynnelsen, når flere og flere planetbarn klumpet seg sammen. Det er 4.4 milliarder år siden jorda truffet av den foreløpig siste enorme gjenstanden fra rommet. Massen som ble slynget ut etter denne kollisjonen, klumpet seg sammen og ble til månen vår. Siden jorda ikke har forandret seg like dramatisk etter det, kan man godt si at det var da jorda som vi kjenner den ble til. Det var ikke så lenge etter denne kollisjonen at vi fikk flytende vann. And the rest is history.