Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Ørkenbillen og det forsinkede flyet

I den namibiske ørkenen, der ingen skulle tru at nokon kunne bu, lever en bille ved navn Stenocara gracilipes. Om morgenen, når tåken ruller inn fra havet, klatrer billen opp på toppen av en sanddyne og stiller seg med rumpa opp. Etterhvert danner det seg vanndråper på ryggen til billen. Når dråpene har blitt store nok, løsner de og triller nedover til billens munn. Slik blir den stående til den har fått nok vann til å klare seg resten av dagen.

5727784378_89665f9f1c_z

Namibisk ørkenbille. Denne heter Onymacris unguicularis, men fungerer på samme måte som vår venn stenocara. Bilde: James Anderson/Flickr/CC license

Det som får dråpene til å vokse er at ryggen til billen er dekket av et mønster med hydrofile, vannelskende, humper på en hyrofob, vannhatende, bakgrunn. Vannet i tåken fester seg til de hydrofile humpene og bygger seg opp til større og større dråper, som ikke vil spre seg utover på det hydrofobe underlaget. Siden de har en relativt liten overflate å henge seg fast i, løsner de når de har kommet over en viss størrelse, og kan trille fritt nedover som en dråpe på et marikåpeblad.

Denne geniale billeteknologien har forskere en god stund brukt som utgangspunkt for overflater som kan høste drikkevann fra luftfuktighet i tørre områder. Men det er mer. Som vi kjenner godt til, kan fuktig luft fryse på overflater. Dette kan skape forsinkelser i flytrafikken fordi flyene må stå i kø for å komme bort til den sci-fi aktige avisningsmaskinen. Her sprayes gufne eller mindre gufne kjemikalier på flyvingene for å senke frysepunktet, slik at det blir mindre sjanse for nedising. Kanskje ørkenbillen kan gi oss et hint om hvordan dette kan gjøres bedre?

Svaret er selvfølgelig ja, og her kommer oppdagelsene på løpende bånd. I desember i fjor ble det publisert en artikkel der man viser hvordan avisingen kan gjøres bedre ved å spraye på frostvæsken som små dråper istedenfor en sammenhengende hinne. De små dråpene av frostvæske er nemlig slik at de gjerne vil ha mer vann i seg. Når vanndampen kommer i nærheten av disse dråpene, og får valget mellom å starte en ny liten dråpe på underlaget ved siden av eller å hoppe inn i frostvæskedråpen, velger de helst det siste. Om  disse dråpene legges med passe stort mellomrom, vil de dermed holde overflaten tørr mellom seg. Vannet som har havnet i frostvæsken blandes fort med resten av dråpen, slik at frysepunktet holdes lavt. Om man legger frostvæsken jevnt utover hele flyvingen, skjer blandeprosessen treigere, og det vil lettere kunne dannes et lag med nesten rent vann på toppen av hinnen, som kan fryse til is. Derfor er dråpemetoden mer effektiv.

Det neste forslaget, som ble publisert i Nature nå i januar, er å kle flyvingen i en ørkenbille-drakt. Da vil vannet samle seg på de vannelskende flekkene, med tørre områder imellom, som i eksempelet over. I dette tilfellet fryser vanndråpene ganske kjapt til is. Men, siden flekkene sitter forholdsvis langt fra hverandre, utvikler ikke dette seg til et sammenhengende ispanser. Kan det være bedre å få litt is på flyvingen, på en kontrollert måte, enn plutselig og ukontrollert isvekst? Isåfall kan dette være veien å gå.

 


1 kommentar

Farvel, klesvask! Om stoffet som får alt til å prelle av

Antall visninger av filmen om nanobelegget Ultra-Ever Dry, som får klær og gjenstander til å holde seg rene nesten uansett hva du gjør med dem, nærmer seg syv millioner. Verden er tydeligvis klar for et slikt vidunderstoff. Men hvordan virker det egentlig?

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann og derfor ble dråpene også mindre.

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann, og derfor ble dråpene også mindre.

Overflater som hater alt

Noe av det jeg syntes var overraskende med Ultra-Ever Dry er at både olje og vann preller av. Vanligvis kan man dele inn stoffer i de som liker vann, og de som liker olje. Liker du olje, så hater du vann, og motsatt. Men her har vi altså et stoff som hater begge deler.

Nå vet ikke jeg akkurat hva dette vidundermiddelet er laget av, men det finnes en gruppe stoffer som ikke liker noen ting: Fluorkarboner. (At flourkarbonene kanskje ikke er de beste for kroppen og miljøet vil jeg overlate til noen andre å si noe om). Disse ligner på hydrokarbonene, som vi er vant til å treffe i form av olje, for eksempel, bortsett fra at det lille hydrogenatomet er byttet ut med fluor. Hverken hydrokarboner eller fluorkarboner har noe særlig til overs for vann, men hydrokarboner liker de fleste av de andre vannhatende stoffene.

I hydrokarbonene kan elektroner svinge seg frem og tilbake mellom karbonatomene og hydrogenatomene, og når to overflater kommer i nærheten av hverandre, kan elektroner i flere molekyler begynne å svinge i takt. Denne trivelige dansingen vil de gjerne fortsette med, så man må bruke litt kraft for å få dem fra hverandre igjen.

Fluoratomene har mer muskler enn de små hydrogenene. Når de først har fått tak i et elektron, så holder de det godt fast. Kommer en annen overflate og vil danse, så sier fluoren at nei du, dette elektronet er alt for lite for dans og moro. Så blir det ingen fest. Fluorkarbonene er en skikkelig asosial gjeng.

Rosineffekten

Om du ikke allerede har prøvd det, er du nødt til å gjøre dette neste gang du drikker farris: Slipp en rosin oppi glasset. Rosinen blir liggende på bunnen av glasset en stund mens det dannes bobler nedi rynkene i skallet. Når boblene har blitt store nok, løfter de rosinen opp til overflaten der den blir liggende og duppe og snurre litt. Boblene vil etterhvert sprekke slik at rosinen detter ned igjen, der den samler opp nye bobler, og det hele gjentar seg. Har du flere rosiner i glasset får du en hel liten rosinballett. Bedre enn TV.

20130709-070755.jpg

Klare til avgang!

Overflaten til rosinen er av den typen som ikke er spesielt glad i vann. I farrisen svømmer mange CO2-molekyler som gjerne vil bli til gass, men synes det er vanskelig å dytte bort vannet for å lage en boble. På rosinoverflaten er det mange groper og sprekker der gassen trives. Gassmolekylene synes nemlig det er vemmelig å være den som sitter ytterst i bobla når det betyr at de må være inntil vannmolekylene, men er de er helt fornøyde med å være ytterst når de kan kose seg på rosinflateveggene i en sprekk. Så lenge det bare er noen få molekyler som må ta drittjobben i sprekkåpningen, går det greit å lage en boble. I farrisen er CO2-molekylene såpass desperate etter å unnslippe at når en boble først er dannet, vil den fortsette med å vokse til den er stor nok til å stige til overflaten.

Legger du en vanndråpe på en vannhatende overflate, vil en kile av luft eller gass skli innunder kantene av dråpen og løfte den opp. Allikevel er midten av dråpen i kontakt med underlaget, og det skal littegrann kraft til for å få dråpen av. På den superhydrofobe Ultra Ever-Dry sklir vanndråpene av så lett som bare det. Dette skyldes rosineffekten. Vidunderbelegget består av kantete nanopartikler med massevis av groper og hulrom mellom, der fiendtlige molekyler ikke lar vannet slippe inn. En dråpe som faller på dette underlaget vil bare være i kontakt med underlaget på noen få, ørsmå topper. Ellers flyter den på en pute av luft. Derfor skal det bare en nesten umerkelig helning til for at dråpen skal trille av.

Dersom nanopartiklene er dekket av fluorkarboner, får hverken vann eller olje muligheten til å feste seg på overflaten. Farvel, klesvask! Problemet med Ultra-Ever Dry er at belegget gir alle overflater en matt, hvit farge. Dette har selvfølgelig også en fascinerende årsak. Men det får vi spare til en annen gang.