Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


2 kommentarer

Melk, smør, såpe og snø

To av mine favorittfenomener forenes i meieriprodukter.

Melka er hvit, snøen er hvit

20130924-112144.jpgLyset som treffer oss fra sola består av mange forskjellige farger, og når du ser dem alle sammen på en gang oppfattes det som hvitt. Så når noe ser hvitt ut, er det fordi at alt lyset som treffer denne tingen blir reflektert tilbake til øynene dine.

Men det finnes jo andre overflater også som reflekterer alt som treffer dem. Speil. De ser ikke hvite ut!

Speil er glatte, og lyset som treffer speiloverflaten sendes tilbake igjen i en helt bestemt vinkel. Hvite overflater kan se glatte ut, men egentlig består de av massevis av små partikler. Partiklene kan godt være så små at du ikke kan se dem med det blotte øye. Dette er tilfellet i melka. Snøen, som også er hvit, består som kjent av mange små snøkrystaller – de trenger ikke være like små, men hver enkelt overflate på snøkrystallene er ikke særlig stor.

Når lyset treffer alle de små partiklene blir det reflektert i alle mulige retninger. Det lyset som ender opp med å treffe øynene dine er en samling av lys som opprinnelig kom fra forskjellige steder. Derfor ser du ikke et bilde, som i speilet, men du ser hvitt, fordi alle fargene har like stor sjanse til å havne i øyet ditt.

Vann i fett og fett i vann

Melka er altså hvit fordi den er full av bitte små partikler. Flesteparten av disse partiklene er fettklumper. Fett er noe som på ingen måte trives sammen med vann, og om vannet og fettet fikk det som de ville, ville alt fettet ha samlet seg på toppen av melka og vannet blitt liggende under. Dette skjer da også med melk som ikke er homogenisert.

For å tvinge fettet til å holde seg spredt i melka, trenger man noen molekyler som kan hjelpe overflatene litt. Det finnes en type molekyler som kalles surfaktanter. De har en ende som liker fett, og en annen som liker vann. Når en dråpe med fett blir dekket av de fettelskende endene på surfaktantene, slik at de vannelskende endene stikker ut i vannet, har plutselig fettklumpene det helt topp med å sveve rundt i vannet. Dette er akkurat det samme som skjer når man bruker såpe for å lure fettet fra klærne og over i vaskevannet. Når melka homogeniseres tvinger man flere av surfaktantene som finnes naturlig i melka til å sette seg på fettdråpene, slik at de blir mer stabile.

I smøret er det mye fett og litt vann, og her er det vannet som er spredt som dråper i fettet med de snille surfaktantmolekylene tett pakket rundt seg.

Når man har melk og skal lage smør må man få fettklumpene i melka til å samle seg. Dette gjør man med å riste og herje på melka samtidig som man blander inn masse luft. Lufta får overflatene til fettklumpene til å bli mindre stabil, slik at når to fettklumper kolliderer på grunn av all herjinga, er det større sjanse for at de smelter sammen til en stor klump.

Partytriks

Neste gang du vil bli kvitt noen på en fest, kan du fortelle dem at melk er en olje-i-vann-emulsjon mens smør er en vann-i-olje-emulsjon.

Du ville forresten ikke blitt kvitt meg.

(Dette er meget løselig basert på en presentasjon fra meieriteknologiekspert Sigrid Svanborg. Alle overforenklinger og misforståelser er mine egne.)


1 kommentar

Farvel, klesvask! Om stoffet som får alt til å prelle av

Antall visninger av filmen om nanobelegget Ultra-Ever Dry, som får klær og gjenstander til å holde seg rene nesten uansett hva du gjør med dem, nærmer seg syv millioner. Verden er tydeligvis klar for et slikt vidunderstoff. Men hvordan virker det egentlig?

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann og derfor ble dråpene også mindre.

Regnet som falt på dette hydrofobe hagebordet har samlet seg til dråper. På den delen av bordet som stod under tak, kom det mindre vann, og derfor ble dråpene også mindre.

Overflater som hater alt

Noe av det jeg syntes var overraskende med Ultra-Ever Dry er at både olje og vann preller av. Vanligvis kan man dele inn stoffer i de som liker vann, og de som liker olje. Liker du olje, så hater du vann, og motsatt. Men her har vi altså et stoff som hater begge deler.

Nå vet ikke jeg akkurat hva dette vidundermiddelet er laget av, men det finnes en gruppe stoffer som ikke liker noen ting: Fluorkarboner. (At flourkarbonene kanskje ikke er de beste for kroppen og miljøet vil jeg overlate til noen andre å si noe om). Disse ligner på hydrokarbonene, som vi er vant til å treffe i form av olje, for eksempel, bortsett fra at det lille hydrogenatomet er byttet ut med fluor. Hverken hydrokarboner eller fluorkarboner har noe særlig til overs for vann, men hydrokarboner liker de fleste av de andre vannhatende stoffene.

I hydrokarbonene kan elektroner svinge seg frem og tilbake mellom karbonatomene og hydrogenatomene, og når to overflater kommer i nærheten av hverandre, kan elektroner i flere molekyler begynne å svinge i takt. Denne trivelige dansingen vil de gjerne fortsette med, så man må bruke litt kraft for å få dem fra hverandre igjen.

Fluoratomene har mer muskler enn de små hydrogenene. Når de først har fått tak i et elektron, så holder de det godt fast. Kommer en annen overflate og vil danse, så sier fluoren at nei du, dette elektronet er alt for lite for dans og moro. Så blir det ingen fest. Fluorkarbonene er en skikkelig asosial gjeng.

Rosineffekten

Om du ikke allerede har prøvd det, er du nødt til å gjøre dette neste gang du drikker farris: Slipp en rosin oppi glasset. Rosinen blir liggende på bunnen av glasset en stund mens det dannes bobler nedi rynkene i skallet. Når boblene har blitt store nok, løfter de rosinen opp til overflaten der den blir liggende og duppe og snurre litt. Boblene vil etterhvert sprekke slik at rosinen detter ned igjen, der den samler opp nye bobler, og det hele gjentar seg. Har du flere rosiner i glasset får du en hel liten rosinballett. Bedre enn TV.

20130709-070755.jpg

Klare til avgang!

Overflaten til rosinen er av den typen som ikke er spesielt glad i vann. I farrisen svømmer mange CO2-molekyler som gjerne vil bli til gass, men synes det er vanskelig å dytte bort vannet for å lage en boble. På rosinoverflaten er det mange groper og sprekker der gassen trives. Gassmolekylene synes nemlig det er vemmelig å være den som sitter ytterst i bobla når det betyr at de må være inntil vannmolekylene, men er de er helt fornøyde med å være ytterst når de kan kose seg på rosinflateveggene i en sprekk. Så lenge det bare er noen få molekyler som må ta drittjobben i sprekkåpningen, går det greit å lage en boble. I farrisen er CO2-molekylene såpass desperate etter å unnslippe at når en boble først er dannet, vil den fortsette med å vokse til den er stor nok til å stige til overflaten.

Legger du en vanndråpe på en vannhatende overflate, vil en kile av luft eller gass skli innunder kantene av dråpen og løfte den opp. Allikevel er midten av dråpen i kontakt med underlaget, og det skal littegrann kraft til for å få dråpen av. På den superhydrofobe Ultra Ever-Dry sklir vanndråpene av så lett som bare det. Dette skyldes rosineffekten. Vidunderbelegget består av kantete nanopartikler med massevis av groper og hulrom mellom, der fiendtlige molekyler ikke lar vannet slippe inn. En dråpe som faller på dette underlaget vil bare være i kontakt med underlaget på noen få, ørsmå topper. Ellers flyter den på en pute av luft. Derfor skal det bare en nesten umerkelig helning til for at dråpen skal trille av.

Dersom nanopartiklene er dekket av fluorkarboner, får hverken vann eller olje muligheten til å feste seg på overflaten. Farvel, klesvask! Problemet med Ultra-Ever Dry er at belegget gir alle overflater en matt, hvit farge. Dette har selvfølgelig også en fascinerende årsak. Men det får vi spare til en annen gang.


3 kommentarer

Klesvaskfysikk

klesvaskJeg er mamma og jeg blogger, så i dag tar jeg for meg et skikkelig mammabloggtema. Hva er det egentlig som foregår der inne i vaskemaskinen?

To typer møkk

Sånn kort fortalt, så finnes det to typer møkk.

Den ene typen elsker å være sammen med vann, og er derfor ikke noe å bry seg om. Hold plagget under springen og skyll bort.

Den andre typen møkk er den som hater vann. Den er verre. Den vil klamre seg fast til klesfibrene når vannet kommer i nærheten.

Stoffer som hater vann er glade i olje. Derfor er olje et godt middel for å løse opp møkk. Dette kan være fint for sarte barnerumper, men ikke fullt så bra for klærne dine ettersom du ikke får bort olja fra klærne etterpå. Det du trenger er noe som kan lokke møkka vekk fra klesfibrene og holde den i vannet slik at den kan skylles bort og vekk.

Kravstore rumpetroll

Hovedingrediensen i de fleste vaskemidler er en type molekyler som heter surfaktanter. Surfaktantene ligner litt på treåringer: De har veldig sterke og selvmotsigende krav. Surfaktantene er bygget opp som små rumpetroll, med et hode som elsker å være i vann, og en hale som lider av alvorlig vannskrekk. Når surfaktantene blandes ut i vann, legger mange molekyler seg kinn mot kinn med halene pekende inn mot midten av en kule. På denne måtene får hodene bade mens halene holdes tørre. Disse små vannelskende klumpene sprer seg villig utover i vannet.

Redde rusk får god hjelp

For å få klærne rene må møkka først løsnes fra underlaget. Dette gjør vi ved å varme opp vannet (olje blir for eksempel mer flytende når den er varm) og ved å bevege på klærne i vannet, så møkka ristes løs.

Når små biter av møkk så er løsnet, har de det helt fryktelig der ute i vannet. Det er her såpa kommer inn i bildet. Små rumpetroll som befinner seg i nærheten fester seg med den vannhatende halen på overflaten av den lille møkkebiten, mens det vannelskende hodet stikker ut. Kinn mot kinn danner rumpetrollende et vannelskende skall rundt rusket, som kan flyte avgårde uten å måtte befatte seg med noen av de ekle vannmolekylene.

Enkelt og greit, dette er hovedprinsippet bak de aller fleste vaskemidler.

I den tynne filmen som blir til veggen i såpebobla ligger to lag med surfaktant-rumpetroll med halene ut i lufta og hodene inn mot et tynt lag med vann. Kjempesåpebobler trenger i tillegg noen molekyler med glyserol som kan legge seg mellom surfaktanthodene og passe på at ikke de små vannmolekylene ikke kan komme seg ut i lufta.

I den tynne filmen som blir til veggen i såpebobla er et tynt vann lag stengt inne mellom to lag surfaktant-rumpetroll som stikker halene ut i lufta. Kjempesåpebobler trenger i tillegg noen molekyler med glyserol som kan legge seg mellom surfaktanthodene og passe på at ingen av de små vannmolekylene unnslipper.


Legg igjen en kommentar

Sånn virker kjøleskapet, og varmepumpa med det samme vi er i gang.

kjoleskapDu har en flaske brus og du vil at den skal være kald. Om du overlater den til seg selv, vil varme fra kjøkkenet flytte seg inn i den kalde flaska, på samme måte som vann alltid vil renne nedover. Du trenger en måte å få varmen til å renne oppoverbakke, altså fra der det er kaldt til der det er varmt. Hva gjør du?

1. Dytt varmen inn i et rør

Du trenger et stoff som er nær kokepunktet. Det betyr at stoffet er flytende, men molekylene begynner å bli lei av å henge inntil hverandre. Ved å tilføre litt ekstra varme, kan molekylene få det siste dyttet de trenger for å ta spranget over i gassform. Du kan altså dytte massevis av varme inn i et rør ved å få væska inne i røret til å fordampe.

2. Få varmen ut igjen

På samme måte som gass blir kald når den utvider seg, blir den varm når du klemmer den hardt sammen. Prøv selv å kjenne etter om sykkelpumpa blir varmet opp når du bruker den! Når gassen har fått høyere temperatur enn det stedet der du vil legge fra deg varmen, vil varmen renne fra gassen og ut i omgivelsene. Etterhvert som molekylene kvitter seg med varme, slapper de mer og mer av helt til de faller i armene på hverandre og blir til væske igjen. Da slenger de fra seg den varmen som de fikk da de ble revet fra hverandre.

Om du har en måte å rive molekylene fra hverandre ett sted, og dytte dem sammen igjen et annet sted, kan du altså måke varme fra ett sted til et annet.

Hva som skjer i kjøleskapet

I bakveggen av kjøleskapet ditt går det rør fram og tilbake. Inni dette røret er det en væske som når kokepunktet omtrent ved den temperaturen du vil ha inne i kjøleskapet. Væska er i utgangspunktet litt kaldere enn kjøleskapet, slik at varmen strømmer fra brusen og alle de andre tingene i kjøleskapet og over i væska. Denne varmen brukes til å gjøre væska inne i røret om til gass.

Gassen strømmer videre gjennom røret sitt til en dings som sitter på utsiden av kjøleskapet. Dingsen, som heter kompressor, brukes til å klemme gassen sammen så den blir varm. Den varme gassen får nå gå på kryss og tvers gjennom et rør på utsiden av kjøleskapet, og varmen, som opprinnelig kom fra brusen din, triller nedover fra det varme røret til det kaldere kjøkkenet. Siden molekylene nå er dyttet så tett sammen, er de glade for å bli til en væske igjen når de bare får kvittet seg med litt varme.

Når alle molekylene har roet seg og blitt en del av væska igjen, slippes væska gjennom en ventil. Mens molekylene først var stuet veldig tett sammen, har de nå litt bedre plass til å bevege seg. De mest eventyrlystne av dem stjeler litt varme fra resten av væska for å kunne sprette over i gassfasen igjen. Da blir væska kaldere enn kjøleskapet, og varmen fra brusen kan igjen renne nedover og inn i det kalde røret for å flyttes ut i kjøkkenet.

Sånn fortsetter det så lenge kompressoren får strøm og kan gjøre jobben sin.

Litt om varmepumpa til slutt

Med det samme vi er i gang kan vi ta for oss varmepumpa. Den gjør nemlig akkurat det samme, bortsett fra at den ikke henter varme fra brusen din, men fra utsiden av huset. I en panelovn blir all den elektriske strømmen som brukes gjort om til varme. I en varmepumpe bruker du bare strøm til å dytte den varmen som tross alt finnes ute i kulda, inn i huset ditt. På den måten kan du klare deg med å bruke mindre elektrisk strøm.