Anja Røyne

Fysiker


1 kommentar

Oppskriften på liv

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Livets begynnelse! Det må da være det aller kuleste man kan forske på?

20130829-190138.jpg

Trinn 1: Sett sammen karboner

Du trenger karbon, for eksempel som CO2, vann og gjerne litt ekstra hydrogen. Rør rundt og tilsett energi i form av UV-stråler fra sola, lyn, varme kilder på havbunnen eller det du måtte ha tilgjengelig. Metallpartikler kan hjelpe karbonene med å finne sammen raskere.

Vips, så får du en slimete suppe som består av massevis med forkjellige organiske molekyler.

Trinn 2: Samle sammen mange like molekyler

En suppe gir ikke liv. Skal du bygge opp noe nyttig trenger du mange av de samme molekylene på samme sted. Her kan det også være nyttig med en fast overflate. På overflatene til forskjellige mineraler vil det være noen steder der en type molekyler gjerne vil oppholde seg, og noen steder som er bedre for andre.

La virke til du har samlet sammen tilstrekkelig mange av de stoffene du har lyst på.

Trinn 3: La få molekylene til å lage kopier av seg selv

Dette steget kan kanskje være litt knotete. Nå som livet har blitt så avansert og fint, har vi enzymer som tar seg av slikt. Før det kom så langt, måtte noen ekstra godt egnede mineraler fungere som liksom-enzymer. Akkurat hvordan de greide det er ikke helt klart, men det er åpenbart at det fungerte.

Tre enkle ting, det er lett som en fei. Sånn sett virker det ikke så helt utenkelig at noe lignende kan ha skjedd andre steder. Universet er jo temmelig stort. Det er ganske fint å tenke på, synes jeg.

Oppskriften er forresten en litt forenklet versjon av den som ble presentert av Robert M. Hazen (Carnegie) i dag.


Legg igjen en kommentar

Italienske forskere lever farlig. Og litt om skummelt norsk brønnvann

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Forskere drapsdømt etter jordskjelv

L'Aquila etter jordskjelvet. Bilde fra Wikimedia Commons.

L’Aquila etter jordskjelvet. Bilde fra Wikimedia Commons.

Det er kanskje flere av oss som husker rettssaken etter l’Aquila-jordskjelvet i 2009. I dag fikk vi historien fortalt fra professor emeritus Paolo Gasparini, en av rådgiverne til forsvarerne.

Byen L’Aquila ligger midt i et av de mest jordskjelvutsatte områdene i Italia. Små jordskjelv forekommer ofte, og statistisk sett skal et stort skjelv finne sted med 475 års mellomrom. Problemet er selvfølgelig at det ikke finnes noen gode måter å forutsi når det jordskjelv skal komme.

I januar 2009 økte jordskjelvaktiviteten, men ikke mer enn den hadde gjort flerfoldige ganger før. Etter at en tekniker ved et italiensk forskningsinstitutt hadde kommet med sitt eget varsel om et kommende stort jordskjelv (han hadde ikke vitenskapelig belegg for metoden han brukte, og ble heller ikke støttet av instituttet sitt) ble folk engstelige, og det ble satt ned en ekspertgruppe for å evaluere risikoen. Denne gruppen kunne ikke si stort mer enn at risikoen var lav (som alltid).

Seks dager senere kom det store skjelvet, og over tre hundre mennesker ble drept.

I oktober 2012 ble syv medlemmer av ekspertgruppen, hvorav en egentlig bare hadde vært der nærmest tilfeldig den dagen, dømt for uaktsomt drap på 29 personer. Disse hadde etter sigende valgt å bli værende i husene sine da jordskjelvet kom fordi de var blitt beroliget av forskernes uttalelser. Medlemmene ble dømt til seks år i fengsel og til å betale åtte millioner euro i kompensasjon til familiene.

Hva skulle forskerne ha gjort? Jordskjelv er en type naturkatastrofe der risikoen for at noe skal inntreffe er ekstremt lav, men skadene man vil få er ekstremt store. Utregninger i ettertid har vist at risikoen for et stort skjelv to timer før skjelvet var økt fra normalt 0.01 % til 0.05 %. Dette er det eneste forskerne kunne ha å kommunisere videre – forskeres rolle må være å gi et så riktig og helhetlig bilde av situasjonen som mulig, ikke å skjule deler av sannheten av frykt for virkningen det kan ha på befolkningen. Så må det være myndighetenes rolle å bruke denne informasjonen til å ta beslutningen om å evakuere eller ikke.

Etter rettssaken har man fått mye lavere terskel for evakueringer, det har blant annet vært flere episoder der barneskoler har vært evakuert etter jordskjelv som har vært rett over to på Richters skala (og det er så godt som ingen ting). Om man skal holde på sånn over tid er det ingen som hører etter i lengden.

Utarmet uran og uønskede resultater

På tirsdag fikk vi høre om en annen rettsak, som pågår akkurat nå. I Quirra på Sicilia, der det tidligere var et militært skytefelt, har lokalbefolkningen rapportert om unormalt mange tilfeller av kreft og misdannelser. Mange mener at dette skyldes bruk av utarmet uran ved skytefeltet. Geokjemikere fra Universitetet i Sienna fikk i oppgave fra forsvarsdepartementet å undersøke om det kunne finnes utarmet uran i området. De gjorde 25 000 analyser på 1500 prøver av jodr sedimenter og overflatevann, brukte metoder utviklet etter krigen i Kosovo, og fant ingen forhøyede uran-verdier.

Professor Luigi Marini er en del av forsvarsgruppen til disse forskerne, som nå er saksøkt av lokale aksjonsgrupper. I følge Luigi har aksjonsgruppen betydelig støtte fra en kjernefysiker med tilknytning til CERN. Han har kritisert forskerne for å være geokjemikere og ikke kjernefysikere.

Men altså, er det noe å saksøkes for? Og om jeg ville finne ut om jeg hadde uran i jorda i hagen min, så ville jeg nok ha prøvd geokjemikerne før kjernefysikerne.

Apropos uran

Ja apropos uran. Visste du at 30 % av norske drikkevannsbrønner har uraninnhold som ligger over grenseverdiene? Det finnes også betydelige mengder kobber og bly i en del av disse brønnene. Dette i følge Clemens Reimann fra NGU, som jeg også har hørt på denne uka. På plottene hans så det norske vannet mye skumlere ut enn alt det andre vannet han hadde tatt prøver av i Europa. Det skyldes visstnok at disse brønnene er boret i hard gneiss og granitt og at gjennomstrømmingen i dem er forholdsvis lav. Så vet vi det.


7 kommentarer

Mission accomplished

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Siden jeg fikk så mange oppmuntrende kommentarer etter panikkanfallet mitt i går synes jeg det er på sin plass med en oppdatering:

Jeg overlevde! Nervøsiteten forsvant da jeg fant meg selv innelåst på do på konferansesenteret to minutter før jeg skulle ha vært på plass. Heldigvis greide jeg å knekke låsemekanismekoden etter en fem minutters tid, mens jeg ventet på at personen jeg hadde snakket med gjennom døra skulle hente en eller annen for å gjøre et eller annet. Jeg er tydeligvis såvidt smart nok til å kunne åpne en dør.

Foredraget gikk fint, jeg fikk passe dårlig tid så jeg kunne gå fort igjennom de litt vanskelige tingene jeg hadde satt på siste slide, og jeg skalv ikke eller noe (jeg pleier egentlig å slutte å være nervøs når jeg begynner å snakke, men selv om jeg vet at det er sånn så er jeg like nervøs på forhånd).

Når han jeg hadde sittet på gulvet og hørt på i går, fordi så mange ville se ham, kom bort til meg etterpå og sa at

«This is the best explanation of disjoining pressure I have ever heard. I finally understood it. I will have to come to Norway and show you my illmenite experiments sometime»

så ble jeg ganske fornøyd.

(Det var forresten ikke meningen at dere skulle forstå det der. Det var bare for å vise hvor smart jeg er.)

Såder, nå skal jeg bare kose meg og bruke den fritiden jeg finner på nyttige ting som å spise is og kjøpe gaver til barna.


Legg igjen en kommentar

Jeg kan også redde verden (eller bidra litt, i det minste)

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Verden står på terskelen av en klimakatastrofe, og jeg bruker tiden min på å forske på stein.

Noen ganger føles det fryktelig bakstreversk. Fremtiden er solceller og vindmøller, fortiden er Oljebransjen, som man alltid ender opp med å få et nært forhold til når man driver georelatert forskning i Norge.

Det jeg forsker på er å finne ut hvordan oppsprekking og vann og kjemiske reaksjoner i stein henger i hop. I dag gav Sally Benson, professor ved Stanford, en presentasjon som viste hvorfor akkurat denne type forskning er helt nødvendig for at vi skal klare oss fremover. Dette er hvorfor:

Vi trenger materialer for å produsere fornybar energi

Det hjelper ikke å vite hvordan vi skal høste energi fra sol, vann og vind om vi ikke har de materialene som trengs for å lage solceller og vindmøller på stor skala. En del av de viktigste ingrediensene begynner vi å merke mangelen på allerede. For å finne og produsere disse materialene uten å ødelegge jorda samtidig må vi lære mer om hvordan vann, kjemiske reaksjoner, oppsprekking og biologisk aktivitet henger sammen.

Vi må gjemme unna mye CO2 i hundretusenvis av år

Vi kommer dessverre ikke til å klare å plutselig slutte å produsere CO2. En ting vi kan gjøre mens vi venter på at de fossile energikildene tar slutt, er å dytte CO2-en ned langt under bakken og håpe at den blir værende der i noen hundretusen år. Dette kan vi ikke være så sikre på uten at vi forstår, ja nemlig, hvordan oppsprekking og kjemiske reaksjoner henger sammen.

Skifergass

Rekk opp hånda, hvem vil forske på skifergass?

Ikke jeg egentlig, det er noen skikkelig skitne greier, og jeg vil helst ikke ha noe med det å gjøre.

Men skifergass er stort. Det har fullstendig snudd opp ned på energilandskapet i USA. USA slipper nå ut mindre karbondioksid fordi de bruker gass istedenfor kull. England er kanskje det neste landet som skal i gang med å hente opp skifergass fra berggrunnen.

I skifere er gassen gjemt inne i nanosmå porer, som virkelig ingen forstår noe særlig om hvordan fungerer. Om skifergassproduksjonen, som allerede er i gang, skal foregå uten å forurense alt for mye, er forskere nødt til å finne ut mer om disse systemene.

Forskning er aldri bortkastet!

Så lenge den publiseres. Vi forskere finner ut av hvordan ting fungerer, og så må vi håpe, eller passe på, at kunnskapen blir brukt til det beste for verden.


14 kommentarer

Panikk!

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jeg visste det skulle komme, men ble like fullt satt ut.

I går var jeg på ualminnelig mange elendige foredrag. I dag har jeg sett veldig mange gode. Det har, som forventet, ført meg til stadiet

HJELP!!! ALLE ER SÅ UTROLIG SMARTE!!! JEG KAN INGENTING!!! PRESENTASJONEN MIN ER DEN VERSTE AV ALLE!!!

som gir meg veldig lyst til å grave meg ned i et hull, eller til å gjøre om på hele presentasjonen min. Det gjør det helt umulig å gjøre det man bør gjøre på et sånt sted, nemlig å ta kontakt med folk, introdusere seg på en selvsikker måte og stille masse glupe spørsmål.

What to do, what to do?

Jeg vil:

– lage en helt ny presentasjon, med masse formler og vanskelige diagrammer, så alle kan se at jeg også er smart.

– alternativt prøve å glemme hele konferansen, sette meg på cafe og spise is og lese bok, på en eller annen måte få sove i natt, og utsette hele problemet til i morgen.

Jeg bør:

– ikke lage en ny presentasjon (fordi den jeg lagde på forhånd faktisk er nøye gjennomtenkt, og i denne panikktilstanden er det lite trolig at jeg skal få til noe bedre).

– ikke fylle på med flere formler og vanskelige diagrammer, fordi ingen kommer til å skjønne noe av det, og hva er poenget da.

– øve et par ganger på presentasjonen jeg har, overbevise meg selv om at det går bra, gå tilbake med hodet hevet, og snakke med folk.

Dette vet jeg jo egentlig:

– DETTE SKJER ALLE (jeg vet ikke helt om det er sant, men jeg er ganske sikker på at det gjelder flere enn meg).

– folk høres selvfølgelig ekstra smarte ut når de snakker om et fagfelt som jeg ikke er ekspert på. Om de hører på meg vil ikke mine ting virke opplagt for dem.

– og hva er det verste som kan skje? Om jeg gir konferansens dårligste foredrag, har jeg kastet bort et kvarter av folks tid. Men det er jo ikke all verden. De vil glemme det i mengden av andre dårlige foredrag.

I morgen halv ti er det uansett overstått. Nå skal jeg slutte å bruke opp tid på blogging, og heller ta frem foredraget mitt. Detta går greit.


2 kommentarer

Hvor gammel er jorda og hvordan ble den dannet?

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jorda. Bilde fra Wikimedia Commons.

Jorda. Bilde fra Wikimedia Commons.


Hvor gammel er jorda, og hvordan ble den dannet? Litt av noen spørsmål. Det er en sånne ting som man kanskje tror at noen vet svaret på allerede. Men, som vanlig i vitenskapen, er det ofte forbløffende hvor mye det gjenstår å finne ut. I dag gav Rickard Carlson, som er professor ved Department of Terrestrial Magnetism (imponerende navn) ved Carnegie, en slags oppsummering av hva man har funnet ut i det siste.

Det startet med en eksplosjon

For eksempel: Først var det jo bare masse støv. Ikke sånt støv som du har under sofaen. Mer som enkeltmolekyler. En supernovaeksplosjon «i nærheten» sendte ut en trykkbølge som dyttet dette støvet nok sammen til at det begynte å klumpe seg og henge seg sammen. Man har funnet noe materiale som stammer fra denne supernovaen.

Det ble ganske raskt (av typen ikke mange hundre millioner år) dannet små (noen hundre kilometer diameter) planetbarn. Når planetbarna har blitt så store begynner innsiden å smelte og det dannes en fast skorpe på utsiden. Noen stoffer forsvinner innover mot midten, og noen liker seg best på utsiden. Så kræsjet flere av disse planetbarna sammen og etterhvert ble jorda vår dannet.

Hva er inni jorda?

En av tingene vi faktisk ikke vet er hva jorda består av. Det er sant! Vi har ingen måte å egentlig finne ut av hva som gjemmer seg inne i midten av jorda. Forskere gjør sine beste gjetninger, putter det inn i modellene sine, og ser om de får svar som stemmer med virkeligheten. Hvor mye radioaktive stoffer har vi for eksempel inne i jorda, og hvor mye varme produserer de? Slike spørsmål kan man kanskje få et bedre svar på om man vet mer om hva som dannet jorda i utgangspunktet. Derfor jobber mange forskere for å finne ut hvordan de små planetbarna så ut før de kom sammen og lagde jorda.

Jordas alder

Når det gjelder hvor gammel jorda er, så er ikke det et helt enkelt spørsmål å svare på. Den vokste jo litt etter litt på begynnelsen, når flere og flere planetbarn klumpet seg sammen. Det er 4.4 milliarder år siden jorda truffet av den foreløpig siste enorme gjenstanden fra rommet. Massen som ble slynget ut etter denne kollisjonen, klumpet seg sammen og ble til månen vår. Siden jorda ikke har forandret seg like dramatisk etter det, kan man godt si at det var da jorda som vi kjenner den ble til. Det var ikke så lenge etter denne kollisjonen at vi fikk flytende vann. And the rest is history.


Legg igjen en kommentar

Sprekker betongen? Prøv mikrober!

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze. 

Sprukken betong kan man finne hvor som helst.

Sprukken betong kan man finne hvor som helst.

Betong er et særskilt nyttig materiale som brukes i det meste av bygninger. Problemer er bare at det har en lei tendens til å sprekke opp.

I mylderet av grusomme presentasjoner i dag (åååå hvorfor kan ikke folk bare snakke tydelig??!! Noen av disse menneskene kunne likeså godt ha sunget en sang eller vist en tegnefilm, så mye får man med seg av det de skal presentere)  fant jeg en perle. Det var doktorgradsstipendiaten Tingting Zhu fra universitetet i Toronto som fortalte en vakker historie om noen ørsmå nyttige skapninger.

En ting forskere har jobbet med i noen år er å bruke bakterier til å lage krystaller inne i sprekker i betong. Bakteriene gjør omtrent det samme som koralldyr når de bygger korallrevene sine. Det har vært et problem at disse bakteriene, i tillegg til å tette sprekker, produserer noen stoffer som ikke er så bra for miljøet.

Tingting og kollegene hennes har funnet en type mikrober som bruker CO2 og sollys til å bygge krystaller laget av kalsium, karbon og oksygen. Når man bruker elektronmikroskop til å se på disse krystallene ser de ut som vakre blomster. Uheldigvis er ikke arbeidet til Tingting publisert ennå, så hun kunne ikke la meg legge ut blomsterbildene hennes på nett. Så du må bare se for deg en bakterie, en slags tjukk liten pølse, og at ut i fra den bakterien vokser en blomst med tykke kronblader.

Etterhvert som blomsten vokser blir bakterien fullstendig dekket i det harde blomstermaterialet og den dør. Sprekken fylles av miniatyr-blomst-gravsteiner.

I første omgang har Tingting funnet ut at mikrobene hennes greier å leve og lage krystaller i de samme kjemiske omgivelsene som de vil møte inne i betongsprekker, og de klarer å bygge harde lag på betongblokker i labben. Neste skritt er å finne ut hvordan dette skal gjøres utendørs og på større skala.

Så om du har sprekker i betongen din, om noen år, kan du kanskje bestille en mikrobebehandling. Et firma kommer og sprayer først mikrober, så kalkholdig vann på betongen, og så får mikrobene jobbe og reparere det som skal repareres. I samme slengen blir du kvitt litt CO2 og får dannet oksygen. Alle tiders.


Legg igjen en kommentar

Konferanseliv = fulltidsnerding

20130825-220558.jpgI dag snek jeg meg ut før barna hadde stått opp og reiste avgårde til Firenze. Her skal jeg være neddykket i geokjemi i en hel uke.

20130825-220459.jpg

Forvitret peridotitt i søyle på en ellers fin bygning

Konferansen starter egentlig ikke før i morgen så jeg hadde muligheten til å slappe av litt da jeg kom fram. Jeg ruslet meg en tur i byen og så mange fine bygninger. En av dem var bygget av hvit, før og grønn stein og det stod mange turister rundt og tok bilde av den.

Jeg benyttet sjansen til å lete etter noe forvitret bygningsstein som jeg kunne ta bilde av til presentasjonen min. Som jeg stod der og stirret intenst på det styggeste hjørnet av bygningen, overhørte jeg noen amerikanere ved siden av meg som diskuterte hva slags peridotitt den grønne steinen kunne være.

Ikke bare meg som er på konferanse, nei.

Senere fikk jeg med meg slutten av en bli kjent-happening (ost, vin og tre tusen mennesker som mingler) i konferanselokalet. Jeg rakk å føle meg helt og totalt lost før jeg faktisk traff noen jeg kjente. Disse fikk jeg med meg på å spise pizza ute på en fortausrestaurant – akk, for et liv.

20130825-220523.jpg

Olli tar i bruk serviett og glass for å forklare modellen sin. Om det ikke er opplagt: Glassene er olivin, serviettene er talk med nano-oliviner, og han viser med fingrene hvor vannet flytter seg.

Pizzaspisingen ble akkompagnert av en detaljert forklaring om selv-lokaliserende porositetsgenererende reaksjoner som finner sted når serpentin dehydrerer til olivin via talk i subduksjonssoner.

Jess! Det er ikke ofte jeg bruker og hører så mange vanskelige ord i løpet av en middag. Jeg tror ikke så mye mer enn ti personer i verden forstår alt dette her.

(Her er kortversjonen: Midt i havet kommer lava opp fra jordas indre og størkner. Steinene som først blir dannet reagerer etterhvert med vann og det dannes krystaller som inneholder hydrogen og oksygen. Siden man dytter inn ekstra molekyler, vokser steinen. Nå går det noen millioner år, og plutselig befinner den samme steinen seg et sted der havbunnen kræsjer med et kontinent. På stillehavssiden av Sør-Amerika, for eksempel. Havbunnen dyttes ned under kontinentet og nedover i jordas indre. Når den har blitt dyttet tilstrekkelig langt ned, er trykket blitt så stort at vannet ikke greier å holde seg inne i steinen lenger. Da blir det dannet flytende vann og man får tilbake den steinen man startet med, sånn omtrent. Men dette vannet som dannes inne i steinen inne i jorda må jo komme seg ut på en eller annen måte. Olli og Timm forklarte meg i dag at de har funnet de kanalene som dannes inne i steinen når dette skjer. Vannet kommer seg ut gjennom disse kanalene. Enkelt og greit.)


12 kommentarer

Forskning som konkurranseidrett

Må man jobbe ti timer om dagen for å henge med i forskningsfronten?

I gårsdagens Klassekampen var det portrettintervju med en internasjonalt anerkjent norsk forsker. Avisen biter seg merke i at han har ansatt au pair:

20130818-202715.jpg
Personen som portretteres er den klassisk forskeren, besatt av sitt fag, han har dedikert livet sitt til det, som han sier.
20130818-131727.jpg
En sånn forsker er ikke jeg. Jeg er en del av en flerbarnsfamilie, uten au pair. Jeg har ikke vaskehjelp en gang. Jeg er helt enig i at det ofte er vanskelig å levere særlig mer enn sju timer arbeid om dagen. Jeg er ofte hjemme når barna er syke.

Det er jo en slags oppfatning i akademia om at man skal jobbe mye. Man skal leve og ånde for faget. Vitenskapelig ansatte på universitetet har såkalt «særskilt uavhengig» arbeidstid, eller hvordan det nå er det er formulert i kontrakten. Underforstått: man får ikke overtidsbetalt, men man jobber selvfølgelig mye mer enn normert arbeidstid, fordi man synes det er så gøy.

Jeg er dypt imponert over dem som klarer å leve på den måten. Selv er jeg rett og slett for lat! Jeg orker ikke tenke og tenke og tenke på fysikk ti timer om dagen. Så mange tanker klarer jeg ikke produsere ut i fra ingenting. Jeg vil leke med barna mine, lage mat, løpe en tur i skogen, spille musikk, være sammen med mannen min. Blogge, kanskje. Så jeg ser på de rundt meg som jobber tre ganger så mye som det jeg gjør og tenker at disse menneskene, de har jommen fortjent den faste stillingen, eller de prosjektmidlene, når den tid kommer.

Men så ser jeg jo, innimellom, at noen av de som jeg trodde var overmennesker ikke er det allikevel. Plutselig har det gått for langt. Noen blir sykmeldt i flere måneder. Det er jo ikke noe å trakte etter.

Det merkelige er at jeg ikke alltid føler det som om jeg henger så langt etter, heller. Jeg ble jo ferdig med doktorgraden på normert tid, to foreldrepermisjoner trukket fra. Jeg har jo fått de prosjektmidlene jeg har søkt om. Jeg får jo publisert i gode tidsskrifter. Ikke OL-gull, men godt nok, synes jeg.

Men man kan jo ikke leve sånn som jeg gjør og henge med i forskningsfronten. Jeg lurer på hvor denne forskningsfronten er og hvordan det er å være der. Jeg er der jo ikke. Slitsomt, skulle jeg tro, men sikkert utrolig berikende.

Jeg vet ikke, men jeg tror at forskningsfronten er et sted som er befolket av de som driver med forskning som konkurranseidrett på elitenivå. Man får poeng etter antall publikasjoner i Science og Nature, utnevnelser i vitenskapsakademier og foreninger, prosjektmidler og antall siteringer, og man kan sammenligne seg med hverandre.

En evigvarende konkurranse, som krever beinhardt arbeid og stor innsats. En flott hobby! «Jeg jobber som forsker, og jeg elsker å konkurrere, så det gjør jeg på fulltid», kunne man si. Men kan man være en god forsker og velge å drive med andre hobbyer istedenfor?

Ja! Håper jeg.

Den dagen kommer kanskje, tidligst om tre år, da jeg må finne meg en ny jobb fordi jeg ikke fulgte med i forskningsfronten. Men jeg fikk i det minste lekt med barna mine.


1 kommentar

Jeg så en regnbue

regnbue

Lyset skinner på en rotete haug med vanndråper og produserer en perfekt regnbue. Det er en av de tingene som bare virker magisk. Hvordan kan alle disse regndråpene samarbeide om å lage noe så fint?

Hvordan solstrålene treffer jorda

Lyset fra sola kan ikke sammenlignes med lyset fra en lampe. Se for deg sola med solstrålene ut til alle kanter, som på en barnetegning. Om sola er så stor som en appelsin, så er jorda et knappenålshode, femten meter unna. Den lille jorda greier ikke fange opp mer enn en enkelt av barnetegning-solstrålene. Altså går alt lyset som treffer jorda går i akkurat samme retning, i motsetning til lampelyset som brer seg utover til alle kanter.

Hva som skjer i skyen

Du kan se regnbuen når du har sola i ryggen. Lyset fra sola skinner forbi deg og på lyser opp vanndråpene i en sky foran deg. Vanndråpene er runde som klinkekuler. Se for deg at sollyset består av massevis av stråler som beveger seg rett fram. Så konsentrerer du deg om en av disse strålene. Den går inn i skyen, og treffer en vanndråpe.

Treffer den langt ut på kanten, vil hele strålen reflekteres og sprette ut til siden.Som om dråpen var et speil.

Hvis den treffer akkurat midt på, vil noe av den sprette rett tilbake, mens resten fortsetter rett fram gjennom dråpen.

Om den derimot treffer ved siden av midten, men ikke for langt ut, vil noe av strålen reflekteres og noe vil fortsette inn i vannet. Den biten av strålen som fortsetter innover går i en litt annen retning enn den hadde opprinnelig.

Hvorfor lyset svinger

På barneskolen min tok de 17. mai seriøst. Jeg vet ikke om det var sånn over alt, men vi øvde ihvertfall, mye, før den store dagen. Vi gikk fire i bredden. Det var svinginga som var vanskeligst. Når en rekke med fire barn kom til en sving, måtte de som fikk yttersvingen gå fort, mens de innerste måtte bremse. Solstråla vi følger er egentlig en bølge. Bølgetoppene i luft ligger danner rette streker etter hverandre, akkurat som skolebarna i 17. mai-toget. Barn går saktere i vann enn i luft, og det gjør lyset også. Se for deg en rekke med skolebarn som kommer til en skråstilt bassengkant. Der skal de gå videre med vann til livet. Barna som kommer først ned i vannet begynner å gå saktere, mens de ytterste fortsetter med større fart en stund til. Dette gjør etterhvert at hele barnetoget svinger. Og akkurat det samme skjer med lysbølgen.

Det er forskjell på farger

Sollyset består av en enorm mengde bølger med forskjellig bølgelengde. En del av disse, som har omtrent halvparten av en tusendels millimeter mellom hver bølgetopp, utgjør det synlige lyset. Øynene og hjernen vår oversetter de forskjellige bølgelengdene i dette området til forskjellige farger. I luft og tomrom har de forskjellige fargene omtrent samme hastighet, men i vann bremses det blå lyset mer enn det røde. Derfor vil det blå lyset svinge litt mer. I noen vanndråper treffer solstrålen akkurat slik at den bøyes litt, treffer bakveggen i dråpa, blir reflektert fram igjen, og bøyes litt til på vei ut. Retningen lyset har når det kommer ut, på vei tilbake igjen fra skyen, avhenger av hvilken farge det har.

Hva du ser

Du ser regnbuen fordi lys treffer øynene dine. Sola står bak deg og sender strålene sine forbi deg og inn i regnværet. Alle strålene går i samme retning.

Den ytterste randen av regnbuen er blå. Hele den blå randen er i samme avstand til øynene dine. Blått lys som går inn i en dråpe, blir reflektert på bakveggen og kommer ut igjen får akkurat den vinkelen som gjør at den treffer øynene dine fra akkurat denne avstanden. Hadde du stått et stykke lengre bort, ville du kanskje ikke ha sett blått på denne plassen, men rødt. Hadde du vært oppe i et fly kunne du kanskje ha sett regnbuen som en hel sirkel.

Noen ganger ser du to regnbuer. Lyset kan nemlig også bli reflektert to ganger inni dråpen før det kommer ut igjen. Da blir det brutt mer, og det mister mer av intensiteten sin på veien. Derfor er denne buen lengre ut enn den første, og svakere. Tre refleksjoner gir en tredje regnbue, men denne er veldig svak og dannes så langt unna den første at den kommer i nærheten av sola – derfor kan man nesten aldri se den.

Din egen regnbue

Ingen kan se den samme regnbuen. Det er bare du som har øynene dine akkurat på den plassen som gjør at du kan se fargene akkurat der du ser dem. Men når forutsetningene er riktige kan mange mennesker se regnbuer på omtrent samme sted, så det gir mening å si ting som at «det var en nydelig regnbue over Ekebergåsen i kveld».

Oppskriften på magi

Verden er full av rot, men regndråper er runde, og sollyset går rett, og derfor har vi regnbuer til å glede oss over.