Anja Røyne

Fysiker


1 kommentar

Idélab, dag to

Lunsj: Jeg er støl i hjernen. Hver gang vi får en oppgave får jeg panikk og tenker at jeg har INGENTING å komme med. Så tar noen ordet, og så kommer vi videre. Jeg snakker med andre og finner ut at jeg ikke er den eneste som føler meg som verdens minst kreative person.

Før middag: Latteren sitter i veggene. Rommet vibrerer av engasjement. Fremtiden er rett rundt hjørnet.

Under middagen får jeg vite svaret på noe jeg har lurt på lenge. Det er verdt hele oppholdet for min del.

Om kvelden maler vi bilder.
IMG_2981

IMG_2985IMG_2988

Forskningsrådet skriver sin egen blogg fra idélabben. Den ligger her.


1 kommentar

De utvalgte

Det snør ute. Bak panoramavinduene i Voksenåsen hotell sitter vi, omlag 30 akademikere fra vidt forskjellige fagfelt, klare til å gå løs på ukens utfordring:  Komme opp med nye, grenseoverskridende, radikale ideer til hvordan vi skal skape et nullutslippssamfunn.

Vi er utvalgt til å delta i Norges Forskningsråds aller første idelab. Konseptet, som er utviklet og gjennomført en rekke ganger i England under navnet sandpit, består av en slags styrt kreativ prosess der målet er at folk som ikke ellers ville ha samarbeidet kommer opp med nye vinklinger og løsninger på problemstillinger. Det virker som et stort ansvar og en umulig oppgave, men vi kan vel ikke gjøre mer enn vårt beste, det holder forhåpentligvis til noe.

I dag har jeg: Truffet masse flotte folk. Diskutert samfunn, teknologi og fremtid, drømmer og virkelighet. Og blitt helt fullstendig overveldet over temaets omfang. Dette er såvidt jeg har skjønt helt etter planen. Jeg prøver å stole på arrangørenes forsikringer om at vi kommer til å ende opp et sted på fredag, selv om alt akkurat nå virker mye mer i det blå enn da vi startet. Jeg er veldig, veldig spent på hva som kommer til å skje i morgen og resten av uka.

Vi ble enige om at det er greit å blogge om prosessen, men ikke om innholdet i det vi diskuterer. Med mange aktører fra private bedrifter er det viktig å kunne stole på at informasjon ikke forsvinner dit den ikke skal. Om noen vil lære mer om hva slags forskning som foregår innen fornybar energi for tiden, kan jeg anbefale denne bloggen.


3 kommentarer

Snø. Magi.

Tenk at vi bor et sted der nedbøren ikke bare kommer i form av regn, men at lufta over oss noen ganger er så kald at vannmolekylene klamrer seg fast i hverandre når de møtes, og danner millioner av fjærlette iskrystaller med overflater som er så flate og små at lyset spres i alle retninger og alt rundt oss blir hvitt.

Tenk at de aller ytterste vannmolekylene ofrer seg for fellesskapet og danner et flytende lag på utsiden av iskrystallen, selv om det egentlig er alt for kaldt, for at resten av krystallen skal slippe å være naken mot vinteren.

Tenk at når to snøfnugg møtes, og is ligger kinn mot kinn, får vannet mellom dem endelig lov til å fryse. Så henger de sammen, og to små har blitt ett litt større.

Tenk at millioner av snøfnugg samles på bakken og forenes til et skjørt, luftig byggverk. Da er de ikke fnugg lengre, men snø.

Om natten kjører løypemaskinen gjennom den stille skogen. Under den blir snøen presset sammen, gamle kontakter brytes, og nye, større, kraftigere dannes. Snøen blir fast og solid.

Neste dag spenner du på deg skiene. På millioner av overflater ofrer vannmolekylene seg for sine venner. Skiene glir på vannet, på snøen. Fort, stille.

IMG_1017


Legg igjen en kommentar

Er det lurt å kjøre fort når det blåser mye?

Zeichen_117-10.svgEn leser stilte meg følgende spørsmål på Facebook-siden:

En ting jeg har lurt på en stund, men aldri fått godt svar på. Hvis man kjører bil i så mye vind at det tar tak i bilen, gjerne fra siden, lønner det seg da å kjøre raskt eller sakte for å få bedre kontroll på bilen?

Akkurat hvordan en bil oppfører seg i vind avhenger av formen på bilen, dekktypen, temperaturen, underlaget og mye annet. Jeg vil også nødig ta på meg ansvaret for folks trafikksikkerhet. Men jeg tror at jeg er på den sikre siden når jeg sier at det lønner seg å kjøre sakte.

Jeg kommer egentlig ikke på noen argumenter for å kjøre raskt (selv om det helt sikkert finnes noen), men jeg har to argumenter for å kjøre sakte:

1. Du trenger tid

Sett du kjører langs en rett veistrekning, og vinden plutselig blåser deg ut mot midten av veien. Det kommer en trailer i mot. Jo saktere du kjører, jo mer tid har du på deg til å komme deg tilbake på riktig kurs. 

2. Vinden kan gi dårligere veigrep
Har du noen gang kjørt i mye vind og kjent at bilen «løftes» opp? Når tak løsner fra hus i storm, er det ikke fordi vinden griper fatt under takskjegget. Lufttrykket er lavere i luft som beveger seg enn i luft som er i ro (sånn er det bare, og det kalles Bernoullis prinsipp), slik at stormen som blåser over huset suger taket opp. Når du kjører er det lettere for vinden å blåse over bilen enn under den, slik at bilen suges oppover. Selv om bilen ikke letter fra bakken, blir kraften som bilen dytter hjulene ned i bakken med, mindre. Jo mer gummidekkene dyttes ned i asfalten, desto bedre er friksjonen, eller veigrepet. Derfor kan vind som blåser over bilen gi dårligere veigrep, bilen kommer til å kjøre langt før den stopper når du bråbremser for å unngå å kollidere med treet som nettopp har falt over veien. 

Kjør sakte. 

Finnes det egentlig situasjoner der det er tryggest å kjøre fort? Kom gjerne med forslag. 


21 kommentarer

Fryser varmtvann fortere enn kaldtvann?

20140108-204445.jpgDu setter to glass med vann inn i fryseren. Til å begynne med er temperaturen i det ene glasset ti grader, og femti grader i det andre. I hvilket glass blir vannet først til is?

Dette høres ut som et dustete spørsmål. Vannet som starter ved femti grader er jo nødt til å passere ti grader før det kan nå null. Når det kommer til ti, er det ti grader varmt vann, akkurat som det andre vannet var da det startet. Det er ingenting som tilsier at vannet som en gang var varmere, skal komme seg fortere fra ti til null enn det andre glasset. Vann er vann. Det kalde vannet fryser vel først?

Mpemba-effekten

Det varme vannet fryser først.

Denne effekten har vært kjent i tusenvis av år. Aristoteles skrev om den 350 før Kristus, det samme gjorde Francis Bacon og René Descartes.

I dag er fenomenet kjent under navnet Mpemba-effekten, og er således et av de få naturfenomener med afrikanskklingende navn. Ernesto Mpemba var en skoleelev i Tanzania som i 1963 oppdaget at melkeblandingen hans ble til iskrem fortere dersom den var varm når han satte den i fryseren. Han ble gjort til latter av lærere og medelever, men fikk, flere år senere, observasjonen sin bekreftet av en universitetsfysiker, Denis Osborne, som besøkte skolen. Denne fysikeren hadde lært at man aldri skulle gjøre narr av elevers spørsmål. Historien og resultatene ble publisert av Mpemba og Osborne i en nydelig artikkel i 1969. Jeg anbefaler alle å lese den.

Sirkulasjonsforklaringen

Man skulle kanskje ikke tro det, men frysing av vann er en komplisert sak. Det er alt for mye som kan varieres: Formen og størrelsen på beholderen, temperaturen på fryseren, luftstrømmene inne i fryseren, mengden av gass og salter som er oppløst i vannet… og lista kan gjøres mye lengre. Det er imidlertid vanskelig å tro at ti grader varmt vann som var femti grader for litt siden, skal være anderledes enn ti grader varmt vann som har vært ti grader lenge. Vann er vann. Derfor er den mest populære forklaringen på Mpemba-effekten basert på forskjellige sirkulasjonsmønstere som oppstår i beholderen med vann.

Når et glass med vann settes inn i fryseren, mister det varme fra sidene, bunnen og toppen. Vannet i midten av glasset holder seg forholdsvis varmt. Kaldt vann er tyngre enn varmt vann. Vann som kjøles ned langs kantene av glasset vil derfor synke ned til bunnen av glasset, mens varmt vann stiger opp. Denne sirkulasjonen gjør nedkjølingen mye raskere enn om vannet hadde ligget helt i ro. I varmt vann blir temperaturforskjellen mellom midten og kantene av glasset større, slik at sirkulasjonen blir raskere. Når den gjennomsnittlige temperaturen i glasset har nådd ti grader, er fortsatt en god del av vannet varmere, og fortsetter å drive de kraftige strømmene. Slik kan vannet i glasset fortsette å kjøles raskere enn det som ble satt inn ved ti grader.

Mpemba utenfor fryseboksen

Det fantes ingen frysebokser på Aristoteles tid, så Mpemba-effekten kan ikke være et rent fryseboksfenomen. Her i Norge har mange fått erfare at det er varmtvannsrørene som fryser først i sprengkulde. Mpemba-effekten får mye oppmerksomhet i USA for tiden, men ikke fordi amerikanerne har blitt veldig opptatt av å sette vann i fryseboksen, men fordi folk går ut i sprengkulda og kaster kokende vann opp i lufta. Vannet blir til en sky av is. Det samme skjer ikke med kaldtvann.

Screenshot 2014-01-08 20.42.55

Når vann fryser i rør, og ikke minst når en vanndråpe blir til is i brøkdelen av et sekund, er det vanskelig å bruke sirkulasjonsmønstrene fra glasset i fryseboksen som forklaring. Er vann – bare vann?

Vannvittig rart

Vannmolekylet består av ett oksygenatom og to små hydrogenatomer som er bundet tett sammen. Hydrogenene og oksygenet ligger ikke pent på linje, men danner en slags V, med oksygenet i bunnen av vinkelen. Dette gjør at vannmolekylet er har negativ ladning på den ene siden og positiv ladning på den andre siden, som igjen gjør at vannmolekyler har en tendens til å klistre seg sammen, hydrogen mot oksygen.

I fjor kom en gruppe kinesiske forskere med en temmelig dristig forklaring på Mpemba-effekten. De mener å ha beregnet at når vann varmes opp og utvides, beveger vannmolekylene seg fra hverandre, men dette får samtidig hydrogenene til å dyttes nærmere oksygenet inne i hvert enkelt molekyl. Den svake bindingen blir lengre, men den sterke blir kortere. Den sterke bindingen er omtrent som en fjær som blir dyttet sammen. Når vannet kjøles ned, må molekylene komme nærmere hverandre igjen. Den komprimerte fjæra inne i molekylet virker da som et slags ekstra batteri som hjelper molekylene til å komme sammen og temperaturen til å gå ned. Det finurlige med denne modellen er at det skal ta ganske lang tid, flere minutter, for disse fjærene å utvides igjen. Derfor er ikke nødvendigvis vannet som var femti grader og har blitt ti akkurat det samme som vannet som startet ved ti grader. Det trenger litt tid på å nå den avslappede vanntilstanden igjen.

Dette var fryktelig vanskelig, så jeg tar det igjen. Ola, Halvor og Odd står på rekke. Ola og Halvor er oksygen og hydrogen i molekyl nummer en, og er sterkt knyttet til hverandre. Odd er oksygenet i molekyl nummer to. Halvor og Odd henger løselig sammen. Når det blir varmt i været, vil Odd og Halvor stå lengre fra hverandre, men spillets regler er sånn at dette gjør at Ola og Halvor blir dyttet nærmere hverandre, mot sin vilje. Når temperaturen går ned igjen, synes Odd og Halvor det er greit å gå litt nærmere hverandre, mens Ola dytter og dytter på Halvor for å få ham nærmere Odd. Det er denne vedvarende dyttingen fra Ola som lar vannet forandre seg raskere når det har vært varmt.

Hva er rett svar?

Vann er både spesielt og viktig, og har blitt tillagt mange ekstraordinære egenskaper opp gjennom årene, som stort sett har vist seg å være feil. Jeg er skeptisk til forklaringen over, men åpen for at den kan ha noe for seg. Det er ikke sikkert at Mpemba-effekten noen gang vil få sin endelige forklaring, og kanskje kan ikke den samme forklaringen brukes på alle situasjonene der effekten oppstår. Det er helt greit.


2 kommentarer

Bilkræsjparadokset: En fomlende festfysikers feiltrinn

Jeg har hatt en avslappende juleferie. Laptopen har støvet ned på pulten og jeg har fylt hodet mitt med romaner i stedenfor fysikk. Men i blant kommer allikevel fysikken frem: Jeg har nemlig flere ganger i løpet av jula havnet i rollen som festfysiker. Dette er en hyggelig, men forholdsvis krevende jobb. Som festfysiker skal man svare på spørsmål om det aller meste på stående fot; man skal gjøre det med forståelig språk, uten å virke belærende, og for all del ikke arrogant, og aller helst si noe litt morsomt i tillegg. Jeg kommer ganske ofte til kort. Fordelen er at festfysikeren sikkert er den som lærer mest i løpet av festen.

Bilkræsjparadokset

IIHS_crash_test_dummy_in_Hyundai_Tucson«Er det sant at det er det samme når to biler kjører i hundre kilometer i timen og frontkolliderer som når en bil kjører i hundre kilometer i timen og kræsjer i en fjellvegg?» spurte min fetter. Han hadde sett det på Mythbusters, men kunne ikke huske hvorfor det skulle være sånn, og syntes det hørtes rart ut.

«Det høres rart ut,» svarte jeg.

Bevegelsenergien

Grunnen til at jeg syntes det hørtes rart ut, var at energien unektelig ikke er den samme. Når noe er i bevegelse har det bevegelsesenergi. Hvor stor denne bevegelsesenergien er finner man ved å ta massen til tingen (antall kilo bilen veier), gange det med hastigheten (antall kilometer per time, eller enda bedre, antall meter per sekund), gange det med hastigheten en gang til, og dele svaret på to.

Resultatet av dette enkle regnestykket er at to like store biler som kjører i hundre kilometer i timen har dobbelt så mye bevegelsesenergi som en bil som kjører i hundre kilometer i timen. Etter kræsjet står bilen, eller bilene, i ro, og all bevegelsesenergien er brukt opp. To er ikke det samme som en. Altså er det ikke det samme om to biler kræsjer i hverandre som om en bil kræsjer i en fjellvegg.

Hvem er i ro?

Jeg ville gjerne komme med noe litt mer overbevisende, så jeg bestemte meg for å bruke et av de eldste triksene i boka. Når man ser på ting som beveger seg, er det egentlig bare interessant at de beveger seg i forhold til hverandre. Jorda beveger seg for eksempel i rasende fart gjennom verdensrommet. Vi sier allikevel at vi står i ro på jorda. På samme måte kan man bestemme seg for at en hvilken som helst ting som beveger seg i konstant hastighet egentlig står i ro, og justere hastighetene til alt rundt så de fortsatt beveger seg riktig i forhold til hverandre.

Om den ene bilen står i ro, kommer den andre mot den i to hundre kilometer i timen. Derfor sa jeg at

«Det blir vel det samme som om en bil treffer en fjellvegg i to hundre kilometer i timen.»

NEI, NEI, NEI!

Dette er feil av to grunner. 1: En bil i to hundre kilometer i timen har ikke like mye energi som to biler i ett hundre. Man finner energien ved å gange massen med hastigheten, og så gange med hastigheten en gang til. Hundre ganger hundre er ti tusen, ganger to er tjue tusen. To hundre ganger to hundre er førti tusen. Feil, feil, feil.

2: Om jeg kjører i to hundre kilometer i timen og treffer en fjellvegg, så står jeg i ro etter kræsjet. All bevegelsesenergien er gått med til å lage et høyt bang og til å mose meg og bilen. Om jeg sitter i ro i en bil og blir truffet av en annen bil som kjører i to hundre, så vil jeg bevege meg bakover etter kræsjet. Bare halvparten av bevegelsesenergien blir brukt opp. Man kan ikke bare bytte ut en bil med en fjellvegg og tro at det skal gå bra.

Hva er det samme?

«Hva sier egentlig spørsmålet?» er det aller første man skal spørre seg selv når man løser fysikkoppgaver. I dette tilfellet er spørsmålet dårlig stilt. Hva betyr det egentlig at noe «er det samme»? Mengden av energi er helt klart ikke den samme. Men om jeg sitter i den ene bilen, er jeg nok ikke så interessert i hva den totale mengden bevegelsesenergi som går over til andre energiformer i kollisjonen egentlig er. Jeg er interessert i hvilke konsekvenser denne konverteringen av energi har for meg og min bil.

Når en bil kræsjer i en fjellvegg i hundre kilometer i timen, går all bevegesesenergien med til å mose bilen og det som er inni.

Når to identiske biler kræsjer helt perfekt rett inn i hverandre, er det dobbelt så mye bevegelsesenergi, og dobbelt så mange biler å mose. Mengden av mos på hver bil blir den samme.

Derfor ville ikke jeg, sånn teoretisk sett, merke noen forskjell på om jeg kjørte i en fjellvegg eller om jeg frontkolliderte med en annen bil i samme hastighet.

Jeg har ikke tenkt å teste dette i praksis, men dette har visstnok blitt testet på Mythbusters, og jeg håper at de kom til omtrent samme konklusjon som meg.

Fornøyd, kjære fetter?