Du setter to glass med vann inn i fryseren. Til å begynne med er temperaturen i det ene glasset ti grader, og femti grader i det andre. I hvilket glass blir vannet først til is?
Dette høres ut som et dustete spørsmål. Vannet som starter ved femti grader er jo nødt til å passere ti grader før det kan nå null. Når det kommer til ti, er det ti grader varmt vann, akkurat som det andre vannet var da det startet. Det er ingenting som tilsier at vannet som en gang var varmere, skal komme seg fortere fra ti til null enn det andre glasset. Vann er vann. Det kalde vannet fryser vel først?
Mpemba-effekten
Det varme vannet fryser først.
Denne effekten har vært kjent i tusenvis av år. Aristoteles skrev om den 350 før Kristus, det samme gjorde Francis Bacon og René Descartes.
I dag er fenomenet kjent under navnet Mpemba-effekten, og er således et av de få naturfenomener med afrikanskklingende navn. Ernesto Mpemba var en skoleelev i Tanzania som i 1963 oppdaget at melkeblandingen hans ble til iskrem fortere dersom den var varm når han satte den i fryseren. Han ble gjort til latter av lærere og medelever, men fikk, flere år senere, observasjonen sin bekreftet av en universitetsfysiker, Denis Osborne, som besøkte skolen. Denne fysikeren hadde lært at man aldri skulle gjøre narr av elevers spørsmål. Historien og resultatene ble publisert av Mpemba og Osborne i en nydelig artikkel i 1969. Jeg anbefaler alle å lese den.
Sirkulasjonsforklaringen
Man skulle kanskje ikke tro det, men frysing av vann er en komplisert sak. Det er alt for mye som kan varieres: Formen og størrelsen på beholderen, temperaturen på fryseren, luftstrømmene inne i fryseren, mengden av gass og salter som er oppløst i vannet… og lista kan gjøres mye lengre. Det er imidlertid vanskelig å tro at ti grader varmt vann som var femti grader for litt siden, skal være anderledes enn ti grader varmt vann som har vært ti grader lenge. Vann er vann. Derfor er den mest populære forklaringen på Mpemba-effekten basert på forskjellige sirkulasjonsmønstere som oppstår i beholderen med vann.
Når et glass med vann settes inn i fryseren, mister det varme fra sidene, bunnen og toppen. Vannet i midten av glasset holder seg forholdsvis varmt. Kaldt vann er tyngre enn varmt vann. Vann som kjøles ned langs kantene av glasset vil derfor synke ned til bunnen av glasset, mens varmt vann stiger opp. Denne sirkulasjonen gjør nedkjølingen mye raskere enn om vannet hadde ligget helt i ro. I varmt vann blir temperaturforskjellen mellom midten og kantene av glasset større, slik at sirkulasjonen blir raskere. Når den gjennomsnittlige temperaturen i glasset har nådd ti grader, er fortsatt en god del av vannet varmere, og fortsetter å drive de kraftige strømmene. Slik kan vannet i glasset fortsette å kjøles raskere enn det som ble satt inn ved ti grader.
Mpemba utenfor fryseboksen
Det fantes ingen frysebokser på Aristoteles tid, så Mpemba-effekten kan ikke være et rent fryseboksfenomen. Her i Norge har mange fått erfare at det er varmtvannsrørene som fryser først i sprengkulde. Mpemba-effekten får mye oppmerksomhet i USA for tiden, men ikke fordi amerikanerne har blitt veldig opptatt av å sette vann i fryseboksen, men fordi folk går ut i sprengkulda og kaster kokende vann opp i lufta. Vannet blir til en sky av is. Det samme skjer ikke med kaldtvann.

Når vann fryser i rør, og ikke minst når en vanndråpe blir til is i brøkdelen av et sekund, er det vanskelig å bruke sirkulasjonsmønstrene fra glasset i fryseboksen som forklaring. Er vann – bare vann?
Vannvittig rart
Vannmolekylet består av ett oksygenatom og to små hydrogenatomer som er bundet tett sammen. Hydrogenene og oksygenet ligger ikke pent på linje, men danner en slags V, med oksygenet i bunnen av vinkelen. Dette gjør at vannmolekylet er har negativ ladning på den ene siden og positiv ladning på den andre siden, som igjen gjør at vannmolekyler har en tendens til å klistre seg sammen, hydrogen mot oksygen.
I fjor kom en gruppe kinesiske forskere med en temmelig dristig forklaring på Mpemba-effekten. De mener å ha beregnet at når vann varmes opp og utvides, beveger vannmolekylene seg fra hverandre, men dette får samtidig hydrogenene til å dyttes nærmere oksygenet inne i hvert enkelt molekyl. Den svake bindingen blir lengre, men den sterke blir kortere. Den sterke bindingen er omtrent som en fjær som blir dyttet sammen. Når vannet kjøles ned, må molekylene komme nærmere hverandre igjen. Den komprimerte fjæra inne i molekylet virker da som et slags ekstra batteri som hjelper molekylene til å komme sammen og temperaturen til å gå ned. Det finurlige med denne modellen er at det skal ta ganske lang tid, flere minutter, for disse fjærene å utvides igjen. Derfor er ikke nødvendigvis vannet som var femti grader og har blitt ti akkurat det samme som vannet som startet ved ti grader. Det trenger litt tid på å nå den avslappede vanntilstanden igjen.
Dette var fryktelig vanskelig, så jeg tar det igjen. Ola, Halvor og Odd står på rekke. Ola og Halvor er oksygen og hydrogen i molekyl nummer en, og er sterkt knyttet til hverandre. Odd er oksygenet i molekyl nummer to. Halvor og Odd henger løselig sammen. Når det blir varmt i været, vil Odd og Halvor stå lengre fra hverandre, men spillets regler er sånn at dette gjør at Ola og Halvor blir dyttet nærmere hverandre, mot sin vilje. Når temperaturen går ned igjen, synes Odd og Halvor det er greit å gå litt nærmere hverandre, mens Ola dytter og dytter på Halvor for å få ham nærmere Odd. Det er denne vedvarende dyttingen fra Ola som lar vannet forandre seg raskere når det har vært varmt.
Hva er rett svar?
Vann er både spesielt og viktig, og har blitt tillagt mange ekstraordinære egenskaper opp gjennom årene, som stort sett har vist seg å være feil. Jeg er skeptisk til forklaringen over, men åpen for at den kan ha noe for seg. Det er ikke sikkert at Mpemba-effekten noen gang vil få sin endelige forklaring, og kanskje kan ikke den samme forklaringen brukes på alle situasjonene der effekten oppstår. Det er helt greit.