Fysikk og Fascinasjon

en blogg om ny og gammel forskning, og om den fantastiske naturen


Legg igjen en kommentar

Klimaendringer: Kan naturen lære oss å rydde opp?

Kalde studenter står på sprukne mantelbergarter.

Kalde studenter står på sprukne mantelbergarter.

Det er tydeligere enn noen gang at vi mennesker er i ferd med å gjøre noe dumt med klimaet vårt, og det store stygge trollet heter CO2. I eventyrene kunne man uskadeliggjøre troll ved å lure dem ut i sola så de ble til stein. Hadde det ikke vært fint om vi kunne gjøre noe tilsvarende med vår tids store trussel?

I går fikk jeg bli med en gjeng studenter på feltarbeid på Rørosvidda for å se på nettopp dette: Hvordan naturlige prosesser har lagret store mengder CO2 i form av fast stein. Om vi kan forstå hvordan dette foregår i naturen, kan det kanskje ta oss ett skritt nærmere å kunne lagre deler av den menneskeskapte karbondioksiden på en tilnærmet permanent og trygg måte.

Ustabil stein fra store dyp

Noen steder på jorda kan vi tråkke på stein som opprinnelig ble dannet under jordskorpa. Såkalte mantelbergarter befinner seg vanligvis dypere enn fem kilometer under havbunnen, eller noe sånt som tretti kilometer under tørt land (fordi kontinentskorpa er mye tykkere enn den på havbunnen). Noen ganger får kollisjoner mellom platene i jordskorpa stein fra mantelen til å bli løftet opp på land, og derfor kan vi finne slike steiner flere steder i Norge. Ett av dem er i nærheten av Røros.

Mineralene i disse mantelbergartene ble dannet fordi de var stabile under det høye trykket og temperaturen dypt der nede. Når stein herfra blir fraktet opp til overflaten, trives ikke mineralene så godt lengre. Når så mineralene kommer i kontakt med vann og andre stoffer som sirkulerer nær jordoverflaten, er det en god sjanse for at mineralene løses opp (som sukker i te, bare uhorvelig mye saktere) og at det felles ut nye, mer stabile faste stoffer.

Svart stein blir hvit

Svart fra mantelen, hvit fra CO2.

Svart fra mantelen, hvit fra CO2.

Steinen vi ser rundt oss har stort sett en rødlig farge, men det skyldes forvitring av overflaten. Et kyndig kakk med geologhammeren avslører at steinen på innsiden ser nesten svart ut. Noen steder er det imidlertid hvite områder innimellom det svarte. Dette er karbonater, som man også kan finne i skjell og i kritt.

Karbonatene kom ikke fra mantelen. De ble dannet da vann som inneholdt CO2 reagerte med de ustabile mineralene fra mantelen. Karbonet som er her skaper ikke drivhuseffekt. Det er låst inne i steinen.

Vi finner noen områder der steinen har blitt mer hvit enn svart. De opprinnelige mineralene ligger igjen som svarte korn i alt det hvite. Noen av kornene ser ut som om de har sprukket og blitt presset fra hverandre av det hvite stoffet. Dette kan være viktig, for sprekker er nødvendige for å få reaksjonen til å skje. Akkurat som du smuldrer opp gjæren for å løse den opp i bakebollen, er går omdanningen av steinen raskere jo mindre biter den er i, fordi vannet kommer i kontakt med mer av steinen.

Få svar, mange spørsmål

De svarte kornene er fulle av hvite sprekker.

De svarte kornene er fulle av hvite sprekker.

Man kan lære mye av å observere stein, men i geologien er det ikke mange faste holdepunkter. En interessant observasjon fører til en drøss med nye spørsmål. Når skjedde disse reaksjonene? Hvor lang tid tok det? Var steinen på overflaten eller dypt nede i jorda? Hvilke stoffer fantes i vannet den reagerte med? Hadde jordskjelv fått steinen til å sprekke opp, eller skyldes noen av sprekkene reaksjonen selv? Ble alle sprekkene dannet på en gang, eller skjedde det i flere omganger?

Som grunnforsker kan man aldri forvente å finne hele svaret. Det er bare å ta tak i gåten og begynne å nøste et sted. Forhåpentligvis kommer man fram til noe som andre kan bygge videre på. Om man greier å snakke med ingeniører og andre som er interessert i å gjøre praktiske ting, er det kanskje også mulig å bruke kunnskapen til å finne løsninger, for eksempel på hva vi skal gjøre med CO2-en som vi slipper ut. Det er bare å brette opp ermene og sette i gang.


Legg igjen en kommentar

Jeg kan også redde verden (eller bidra litt, i det minste)

Denne uken skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Verden står på terskelen av en klimakatastrofe, og jeg bruker tiden min på å forske på stein.

Noen ganger føles det fryktelig bakstreversk. Fremtiden er solceller og vindmøller, fortiden er Oljebransjen, som man alltid ender opp med å få et nært forhold til når man driver georelatert forskning i Norge.

Det jeg forsker på er å finne ut hvordan oppsprekking og vann og kjemiske reaksjoner i stein henger i hop. I dag gav Sally Benson, professor ved Stanford, en presentasjon som viste hvorfor akkurat denne type forskning er helt nødvendig for at vi skal klare oss fremover. Dette er hvorfor:

Vi trenger materialer for å produsere fornybar energi

Det hjelper ikke å vite hvordan vi skal høste energi fra sol, vann og vind om vi ikke har de materialene som trengs for å lage solceller og vindmøller på stor skala. En del av de viktigste ingrediensene begynner vi å merke mangelen på allerede. For å finne og produsere disse materialene uten å ødelegge jorda samtidig må vi lære mer om hvordan vann, kjemiske reaksjoner, oppsprekking og biologisk aktivitet henger sammen.

Vi må gjemme unna mye CO2 i hundretusenvis av år

Vi kommer dessverre ikke til å klare å plutselig slutte å produsere CO2. En ting vi kan gjøre mens vi venter på at de fossile energikildene tar slutt, er å dytte CO2-en ned langt under bakken og håpe at den blir værende der i noen hundretusen år. Dette kan vi ikke være så sikre på uten at vi forstår, ja nemlig, hvordan oppsprekking og kjemiske reaksjoner henger sammen.

Skifergass

Rekk opp hånda, hvem vil forske på skifergass?

Ikke jeg egentlig, det er noen skikkelig skitne greier, og jeg vil helst ikke ha noe med det å gjøre.

Men skifergass er stort. Det har fullstendig snudd opp ned på energilandskapet i USA. USA slipper nå ut mindre karbondioksid fordi de bruker gass istedenfor kull. England er kanskje det neste landet som skal i gang med å hente opp skifergass fra berggrunnen.

I skifere er gassen gjemt inne i nanosmå porer, som virkelig ingen forstår noe særlig om hvordan fungerer. Om skifergassproduksjonen, som allerede er i gang, skal foregå uten å forurense alt for mye, er forskere nødt til å finne ut mer om disse systemene.

Forskning er aldri bortkastet!

Så lenge den publiseres. Vi forskere finner ut av hvordan ting fungerer, og så må vi håpe, eller passe på, at kunnskapen blir brukt til det beste for verden.


2 kommentarer

Hvor gammel er jorda og hvordan ble den dannet?

Denne uka skriver jeg fra Goldschmidt-konferansen i geokjemi, i Firenze.

Jorda. Bilde fra Wikimedia Commons.

Jorda. Bilde fra Wikimedia Commons.


Hvor gammel er jorda, og hvordan ble den dannet? Litt av noen spørsmål. Det er en sånne ting som man kanskje tror at noen vet svaret på allerede. Men, som vanlig i vitenskapen, er det ofte forbløffende hvor mye det gjenstår å finne ut. I dag gav Rickard Carlson, som er professor ved Department of Terrestrial Magnetism (imponerende navn) ved Carnegie, en slags oppsummering av hva man har funnet ut i det siste.

Det startet med en eksplosjon

For eksempel: Først var det jo bare masse støv. Ikke sånt støv som du har under sofaen. Mer som enkeltmolekyler. En supernovaeksplosjon «i nærheten» sendte ut en trykkbølge som dyttet dette støvet nok sammen til at det begynte å klumpe seg og henge seg sammen. Man har funnet noe materiale som stammer fra denne supernovaen.

Det ble ganske raskt (av typen ikke mange hundre millioner år) dannet små (noen hundre kilometer diameter) planetbarn. Når planetbarna har blitt så store begynner innsiden å smelte og det dannes en fast skorpe på utsiden. Noen stoffer forsvinner innover mot midten, og noen liker seg best på utsiden. Så kræsjet flere av disse planetbarna sammen og etterhvert ble jorda vår dannet.

Hva er inni jorda?

En av tingene vi faktisk ikke vet er hva jorda består av. Det er sant! Vi har ingen måte å egentlig finne ut av hva som gjemmer seg inne i midten av jorda. Forskere gjør sine beste gjetninger, putter det inn i modellene sine, og ser om de får svar som stemmer med virkeligheten. Hvor mye radioaktive stoffer har vi for eksempel inne i jorda, og hvor mye varme produserer de? Slike spørsmål kan man kanskje få et bedre svar på om man vet mer om hva som dannet jorda i utgangspunktet. Derfor jobber mange forskere for å finne ut hvordan de små planetbarna så ut før de kom sammen og lagde jorda.

Jordas alder

Når det gjelder hvor gammel jorda er, så er ikke det et helt enkelt spørsmål å svare på. Den vokste jo litt etter litt på begynnelsen, når flere og flere planetbarn klumpet seg sammen. Det er 4.4 milliarder år siden jorda truffet av den foreløpig siste enorme gjenstanden fra rommet. Massen som ble slynget ut etter denne kollisjonen, klumpet seg sammen og ble til månen vår. Siden jorda ikke har forandret seg like dramatisk etter det, kan man godt si at det var da jorda som vi kjenner den ble til. Det var ikke så lenge etter denne kollisjonen at vi fikk flytende vann. And the rest is history.


Legg igjen en kommentar

Konferanseliv = fulltidsnerding

20130825-220558.jpgI dag snek jeg meg ut før barna hadde stått opp og reiste avgårde til Firenze. Her skal jeg være neddykket i geokjemi i en hel uke.

20130825-220459.jpg

Forvitret peridotitt i søyle på en ellers fin bygning

Konferansen starter egentlig ikke før i morgen så jeg hadde muligheten til å slappe av litt da jeg kom fram. Jeg ruslet meg en tur i byen og så mange fine bygninger. En av dem var bygget av hvit, før og grønn stein og det stod mange turister rundt og tok bilde av den.

Jeg benyttet sjansen til å lete etter noe forvitret bygningsstein som jeg kunne ta bilde av til presentasjonen min. Som jeg stod der og stirret intenst på det styggeste hjørnet av bygningen, overhørte jeg noen amerikanere ved siden av meg som diskuterte hva slags peridotitt den grønne steinen kunne være.

Ikke bare meg som er på konferanse, nei.

Senere fikk jeg med meg slutten av en bli kjent-happening (ost, vin og tre tusen mennesker som mingler) i konferanselokalet. Jeg rakk å føle meg helt og totalt lost før jeg faktisk traff noen jeg kjente. Disse fikk jeg med meg på å spise pizza ute på en fortausrestaurant – akk, for et liv.

20130825-220523.jpg

Olli tar i bruk serviett og glass for å forklare modellen sin. Om det ikke er opplagt: Glassene er olivin, serviettene er talk med nano-oliviner, og han viser med fingrene hvor vannet flytter seg.

Pizzaspisingen ble akkompagnert av en detaljert forklaring om selv-lokaliserende porositetsgenererende reaksjoner som finner sted når serpentin dehydrerer til olivin via talk i subduksjonssoner.

Jess! Det er ikke ofte jeg bruker og hører så mange vanskelige ord i løpet av en middag. Jeg tror ikke så mye mer enn ti personer i verden forstår alt dette her.

(Her er kortversjonen: Midt i havet kommer lava opp fra jordas indre og størkner. Steinene som først blir dannet reagerer etterhvert med vann og det dannes krystaller som inneholder hydrogen og oksygen. Siden man dytter inn ekstra molekyler, vokser steinen. Nå går det noen millioner år, og plutselig befinner den samme steinen seg et sted der havbunnen kræsjer med et kontinent. På stillehavssiden av Sør-Amerika, for eksempel. Havbunnen dyttes ned under kontinentet og nedover i jordas indre. Når den har blitt dyttet tilstrekkelig langt ned, er trykket blitt så stort at vannet ikke greier å holde seg inne i steinen lenger. Da blir det dannet flytende vann og man får tilbake den steinen man startet med, sånn omtrent. Men dette vannet som dannes inne i steinen inne i jorda må jo komme seg ut på en eller annen måte. Olli og Timm forklarte meg i dag at de har funnet de kanalene som dannes inne i steinen når dette skjer. Vannet kommer seg ut gjennom disse kanalene. Enkelt og greit.)


Legg igjen en kommentar

Sandkasselek for voksne

Denne helgen har jeg altså brukt til å legge heller i hagen. Jeg foreslo egentlig at vi skulle ha de hellene fordi jeg trodde det bare var å dra jord utover, slenge ut noen heller og strø gressfrø over det hele. Nå forstår jeg at det innebærer spaing av flere tonn sand og løfting av inmari tung stein. Men fint blir det, og jeg har innsett at sand er ganske fascinerende greier.

Innerst ved husveggen hadde vi en ganske stor grøft fylt med leca. Det er visst noe man gjør for å unngå vann i kjelleren. Hulrommene mellom lecaekulene er nemlig så store at vannet ikke greier å holde seg fast i dem, men renner rett ned og bort til naboen (jeg tror det er planen). Vi måtte ta bort trappa inn til huset, så for å komme ut i hagen måtte man ta et stort skritt ned og rett i denne lecagrøfta. Når du tråkker på leca så sklir kulene mot hverandre og ut til siden så du synker ned. Omtrent som å hoppe i ballrommet på IKEA men du blir mye mer møkkete og irritert.

Så var altså spørsmålet hvordan vi skulle legge heller, til å gå på, oppå all denne lecaen. Vi bestemte oss for å dekke kulene med en fiberduk. Oppå der la vi et lag med sand som vi tråkket til.

Her er den fascinerende biten: En halv meter bred grøft med kuler som ikke kan holde noe som helst oppå, en tynn duk og en tommelfingerbredde med hardpakket fuktig sand – det blir forbausende stabilt! Plutselig kunne vi spasere omkring oppå grøfta og det føltes som et fast gulv. Er ikke det egentlig veldig rart?

Alle har lekt i sandkassa som barn, men en del av erfaringene er vel gått i glemmeboka. For å oppsummere: Tørr sand går det ikke an å bygge med, det renner bare ned. Klissvåt sand går det heller ikke an å bygge med, det blir bare som våt rennete gjørme. Fuktig sand, derimot, kan du bygge de mest fantastiske byggverk med.

Når sanda er fuktig er det både vann og luft mellom sandkornene. Sandkorn har overflater som er veldig glade i vann. Som jeg har snakket om før, så kan vann like veldig godt å klamre seg til for eksempel glass (som jo er laget av sand), men vannet er veldig lite glad i å ha en overflate rett ut mot lufta.

Når to sandkorn er veldig nær hverandre, får vannet muligheten til å lage en liten dråpe mellom disse to kornene. Dråpen har veldig mye overflate mot sand, og bare litt mot luft, og er derfor fornøyd med tilværelsen. Vannet lager det man kaller en kapillærbru mellom de to sandkornene. Om du prøver å dra disse kornene fra hverandre, strekkes vanndråpen og den får mer og mer overflate mot luft. Det vil den ikke! Derfor vil vanndråpen prøve å dra sandkornene tilbake mot hverandre. Vanndråpen virker omtrent som en liten strikk som er limt fast mellom de to sandkornene. Om man drar hardt nok, ryker strikken (dråpen) og kornene kan bevege seg fritt i forhold til hverandre igjen. I fuktig sand sitter de fleste av sandkornene fast i flere andre med slike vanndråpestrikker. Det er derfor man kan bygge sandslott med overheng og det hele uten at det raser sammen. Dersom jeg skulle ha greid å bøye fiberduken og det tynne sandlaget ned i lecagrøfta da jeg tråkket på den, måtte jeg ha dratt mange sandkorn fra hverandre. Kraften fra alle de bittesmå vanndråpene gjorde at det ikke skjedde.

Når sanda er veldig tørr er det nesten ingen kapillærbruer til å holde fast sandkornene, slik at de er frie til å bevege seg i forhold til hverandre. På mange måter oppfører tørr sand seg omtrent som vann, der man kan tenke seg at sandkornene spiller rollen til vannmolekylene. Den vil for eksempel stort sett renne nedover. En forskjell på tørr sand og vann er at siden sandkornene ikke er spesielt gode venner, de bryr seg altså ikke om de er ved siden av et annet sandkorn eller ikke, så blir ikke de kornene som sitter i utkanten ulykkelige. Derfor er det ikke sånn at sanda gjør det den kan for å unngå å få for stor overflate, slik som vann gjør det.

En annen forskjell er den at det er friksjon mellom sandkornene. Når sanda renner ned så får man ikke en helt rett overflate, men det dannes en haug. Desto mer kantete sandkornene er, desto lettere det er for dem å huke seg fast i hverandre, og desto brattere kan denne haugen bli. Det blir også en del luft imellom kornene i haugen. Om man dunker, tramper eller rister på sanda, får sandkornene hjelp til å rive seg løs fra naboene og hoppe videre nedover til de til slutt ligger så tett som de kan komme, med en plan overflate. Da har de på en måte nådd sitt nullpunkt og vil ikke flytte seg noe mer uten at noen kommer og løfter dem opp. Da vi skulle legge stein, var det viktig at sanda under fikk finne sitt nullpunkt før steinen ble lagt ut. Ellers ville den med tid og stunder greie å komme seg dit og så ville steindekket vårt blitt ugjevnt. Derfor leide vi en såkalt hoppetusse (fint navn), en tung sak med plate under og motor oppå som får den til å hoppe rundt omkring på sanda. Det bråkte og førte forhåpentligvis til at steinene våre ligger der de ligger i mange år.

I kliss våt sand er det heller ingen kapillærbruer, for her er det jo vann over alt og ingen plagsomme overflater mellom vann og luft. Derfor er våt sand like håpløs som tørr sand når det gjelder sandslottbygging.

Lecakuler, sand (strengt tatt heter det subbus når den har så store korn i seg) og betongheller av typen Herregård (fint skal det være).

Lecakuler, sand (strengt tatt heter det subbus når den har så store korn i seg) og betongheller av typen Herregård.


Legg igjen en kommentar

Krøllete stein

Jeg er heldig som jobber sammen med geologer, for de har lært meg mye som gjør hverdagen mer interessant. Det er jo alltids stein å se på. Se på denne, for eksempel:
20130715-122357.jpg
Fantastisk! Alle stripene i steinen har blitt helt krøllete! Små bølger og store bølger og forskjellige retninger. Også stein som er så hardt. Her må det ha hendt noe stort.

Det er godt jeg har forskere noen kontorer bortenfor som jobber hardt med å forstå hvordan folding av stein foregår.

Hovedprinsippet bak foldingen er ganske greit å forstå. Jordskorpa består av forskjellige plater som beveger seg i ulike retninger. Noen ganger kolliderer to kontinenter med hverandre. Om to biler frontkolliderer i stor hastighet, vil stålplatene i bilen krølle seg sammen. Kontinenter beveger seg ikke fort, men til gjengjeld er de fryktelig store og tunge. Derfor vil de folde seg når de støter sammen, slik som bilene.

Fjellene i Himalaya er svimlende høye fordi India kræsjer med Eurasia. Akkurat nå. De norske fjellene var kanskje enda høyere en gang, da Grønland og Norge kolliderte. Nå har vi bare restene igjen.

På kjøkkenet har jeg en svamp til å vaske med. Den er stripete. Om jeg klemmer sammen svampen i lengderetningen, vil den bøye seg – og alle stripene bøyer seg sammen. De svinger seg ved siden av hverandre som kjørefeltene på en amerikansk motorvei.

Før Grønland kom og dultet til Norge, lå nok de hvite og svarte lagene i denne steinen pent og rett over hverandre. Nå er de krøllet hit og dit. Den stripete steinen har altså ikke bøyd seg på samme måte som svampen min. Hvordan skjedde dette?

Geologer er vant til å tenke på ting som skjer over veldig, veldig lang tid, og om du bare har god nok tid, så er stein flytende. Det er jo flere andre ting som trenger litt tid på seg til å flyte. Honning kan trenge alt for lang tid til å dryppe av skjea og ned i teen. Vann, derimot, renner som bare det. Matolje ligger et sted i mellom.

Tenk deg at du har et lag med noe som er veldig treigtflytende inne i en blokk av noe annet som flyter lettere, og klemmer hele blokken sammen. Det treige laget i midten får kanskje ikke tid til å flyte, slik at det bøyer seg som en plate, mens stoffet som omgir det flyter unna for å gi plass. Det er dette som har skjedd i steinen. De fine mønstrene blir til fordi de forskjellige lagene har litt forskjellige egenskaper.

Siden stein er så treigtflytende at det kan ta tusener av år å få den til å gjøre noe som helst, er det ikke så lett å vite hvor treigtflytende den faktisk er, eller å gjøre eksperimenter for å se hva slags foldemønstre man kan få av forskjellig typer stein. Derfor lager geologkollegene mine liksomsteiner på datamaskinene sine, og ser på hva slags mønstre man kan få ut i fra forskjellige sammensetninger og dyttehastigheter. Målet er å kunne forstå litt mer av hva de fine steinene har å fortelle oss om jordas historie.

(Om du vil stirre mer på den fine steinen på bildet, finner du den i en mur på Kronprinsesse Märthas plass like ved Rådhuset i Oslo.)

*****************************
Rettelse: Jeg vet ikke om steinen på bildet var involvert i kollisjonen mellom Norge og Grønland! Jeg hadde egentlig en annen stein i tankene (fra Jotunheimen), men byttet bilde i siste liten fordi jeg ikke var så fornøyd med kvaliteten på det jeg hadde. Så endte jeg opp med denne bygningssteinen som kan være fra hvor som helst. Fryktelig uvitenskapelig, selvfølgelig!


4 kommentarer

Stephen Taber og telehivmysteriet

Det skjer hvert år: Våren kommer, og avisene skriver om nye veiprosjekter som er ødelagt av telehiv.

Når vann fryser til is nede i bakken blir noen gang overflaten presset oppover, og det er dette vi kaller telehiv. Gjengs oppfatning er at dette skjer fordi at vann utvider seg når det fryser, sånn som vi kan oppleve om vi legger en full flaske i fryseboksen og den sprekker.

Men, hold dere fast: Dette er (nesten aldri) årsaken til telehiv! Flaska i fryseboksen sprenger ikke om du ikke har satt på korken. Vannet nede i jorda er heller ikke spesielt innestengt. Når det fryser og utvider seg, kan det vannet som blir til overs dyttes nedover i jorda. Dessuten så utvider vannet seg med ni prosent når det fryser, mens «hivet» som forårsakes av telen kan bli mye større enn dette skulle tilsi.

For å rette opp i denne misforståelsen kommer nå et innlegg i kategorien Gammel Forskning.

Stephen Taber II

Stephen Taber II

For 101 år siden, i 1912, fikk den unge Dr. Stephen Taber II stillingen som professor ved institutt for geologi og mineralogi ved universitetet i South Carolina. Siden han var eneste professor ved instituttet kunne han gjøre omtrent som han ville.

Stephen Taber hadde lagt merke til tidligere forskning som så ut til å vise at is var i stand til å løfte opp overflaten mye mer enn de ni prosentene utvidelse skulle tilsi. Han var forbløffet over at dette ikke hadde vagt mer oppsikt, og fikk lyst til å studere dette i mer detalj. De første, lovende eksperimentene fikk han gjort noen kalde netter vinteren 1914-1915. Det var imidlertid vanskelig å være avhengig av været for å gjøre eksperimenter, så han la studiet på hylla for noen år. Gjennombruddet kom i 1927. Som han skriver i artikkelen sin:

«In March, 1927, a suitable low-temperature apparatus was placed at my disposal by Mr. E.W. Allen,  district manager of the Frigidaire Corporation, and I began an investigation to determine the factors involved in excessive and differential frost heaving.»

Professoren lagde sylindere av papp, som han dyttet fulle av leire. På innsiden av pappen hadde han smurt parafin så de skulle være vanntette. De var åpne i bunn, og han plasserte dem på et lag med sand nederst i fryseboksen. Så helte han på vann så både leiren av sanda ble helt gjennomvåte. Plassen mellom sylindrene fylte han med tørr sand. Siden kjøleelementene i fryseboksen var på toppen, ville dette være ganske likt sånn som det er i virkeligheten når jord fryser. Da er det jo også kaldest øverst.

Tabers eksperimenter, kopiert fra artikkelen hans fra 1929.

Tabers eksperimenter, kopiert fra artikkelen hans fra 1929.

Øverst på sylindrene plasserte han forskjellige lodd: av tre, av jern eller begge deler. Det gjorde han fordi han lurte på både hvor mye vekten på toppen ville ha å si, og hva som ville være effekten av temperaturen på toppen av sylinderen. Treloddet er selvfølgelig lettest, mens metall leder varme bedre, så sylinderen med bare jernloddet vil være kaldest oppå.

Hva skjedde?

Alle loddene ble løftet oppover. Det som ble løftet aller mest var ikke det lette treloddet, men det tunge jernloddet! Det betyr at det ikke er vekten, men temperaturen som har mest å si. Jernet klarer å flytte bort mer av varmen fra vannet, så det greier å danne mer is. Med et trelodd oppå får varmen mye motstand for å komme seg bort, og det bremser på frysingen. Det som løftet seg minst var kombinasjonen tre + jern. Her er det vanskelig å få bort varmen, og i tillegg er det en stor vekt som må løftes opp. Det betyr altså at vekten også har noe å si.

Taber noterte også hvor mye loddene ble løftet i forhold til hvor langt ned sylindrene hadde fryst (ratio of uplift to depth of freezing). Om det bare var vannet som satt der fra før som hadde blitt til is, så burde dette bli omtrent ni prosent, eller 0,09. Det han målte var mye mer, rundt 40 prosent.

Det betyr at vann har flyttet seg fra et annet sted og til der hvor isen ble dannet. Det eneste vannet som var tilgjengelig var i den varmere delen av sylinderen under isen, og i sanden nedenfor. Fryseprosessen har altså trukket vannet oppover!

Det minner vel litt om disse trærne jeg snakket om? Helt riktig, vi er tilbake til kapillærkrefter og overflater. Leire (og silt, som bare er litt mer grovkornet) består av bittesmå mineralkorn, med overflater som elsker vann. Siden plassen mellom kornene er så liten, er det vanskelig for vannet både å lage bobler og å fryse til is. Derfor kan temperaturen komme godt under null før vannet begynner å fryse.

Selv om noe av vannet har frosset til is, er ikke mineraloverflatene spesielt lystne på å gi slipp på det flytende vannet sitt. Frosset is og mineraloverflater går nemlig ikke spesielt godt overens. Derfor vil det fortsette å være flytende vann mellom iskrystallen og leirkornene. Når en iskrystall først er dannet, vil det oppstå en liten konflikt: Vannet på isen vil fryse, men isen vil ha et flytende lag rundt seg. Dette gjør at når litt av vannet rundt isen fryser til, skapes et undertrykk som suger vann opp til der hvor det fryser.

Ganske likt det som skjer i trærne. Der brukes litt av vannet opp til fordampning, og nytt vann må suges opp. I jorda brukes noe av vannet opp til å lage is, og nytt vann må suges opp nedenifra.

Dette er også grunnen til at isen ikke er gjevnt fordelt i leira, men legger seg lagvis nedover. Har man først begynt å lage is ett sted er det nemlig mye lettere å fortsette å fryse på den enn å lage ny is et annet sted. Derfor suges vann opp til en islinse til det har blitt kaldt nok et stykke lengre ned til å starte en ny linse der. Taber viser fram et stykke frossen vei han har fått av en kamerat i veibransjen, for å demonstrere at det er det samme som skjer i virkelig telehiv:

Frossen veibit, 1929.

Frossen veibit, 1929.

Noen ganger kan sugekreftene i vann som fryser føre til ganske enorme formasjoner, som disse pingoene.

(om noen vil lese mer, ligger Tabers originale artikkel her)