Anja Røyne

Fysiker


5 kommentarer

Hva hvis? Nerd på norsk.

Jeg har hørt at damer som skriver blogg kan få tilsendt gratis sminke og sånn. Det gjør ikke jeg! Merkelig nok. Men her for en stund siden fikk jeg faktisk en hyggelig mail med spørsmål om jeg kanskje muligens kunne godta å få tilsendt noe gratis. Det ble jeg litt skeptisk til, helt til jeg så hva det var: Bok!

Morgenstund med fin bok.

Morgenstund med fin bok.

Denne boka hadde jeg nemlig sett før, dog ikke på norsk. En gang jeg deltok på Abels Tårn hadde paneldeltaker Amir Hammami med seg denne boka, storfornøyd fordi den inneholdt svaret på spørsmålet han var blitt stilt, og han snakket veldig varmt om den.

Så jeg sa JATAKK! og fikk boka i posten, og siden det har jeg kost meg med å lese svarene på ting som «Finnes det nok energi til å flytte verdens nåværende befolkning vekk fra overflaten?» (kanskje, men vi ville nok ødelegge planeten vår i prosessen) og «Hva ville skjedd hvis alle på jorden stod så tett de kunne og hoppet, og alle landet på bakken samtidig?» (hoppingen gjør ingenting, men det ville bli et svare strev å få folk tilbake på plass etterpå og sannsynligvis ville de fleste sivilisasjoner gå under).

Som seg hør og bør når jeg har fått noe gratis kommer nå litt REKLAME (nå er dere advart):

Det som er bra med denne boka er nemlig at forfatteren er mindre lat enn meg. Noen ganger har jeg vært på Abels Tårn for å svare på spørsmål av typen «kan vi lage en evighetsmaskin hvis vi gjør sånn og sånn og sånn» eller «hvor fort må vi flakse med armene for å fly», og så har jeg svart

NEI, DET GÅR IKKE. FOR SÅNN ER FYSIKKENS LOVER.

Da blir programleder litt skuffet, folk sender lange oppfølgingspørsmål og pappa klager på at jeg oppfører meg arrogant.

Men han fyren her (som forresten også har en veldig kul nerde-tegneserie på nett), han regner ut alt. Og litt til. Det er veldig morsomt (om man er av typen som synes sånt er morsomt, du vet vel allerede om du er det eller ikke) og man kan også ende opp med å lære nye ting.

For eksempel: På spørsmålet «Hvis alle mennesker på jorden siktet med en laserpeker på månen samtidig, ville den skifte farge?» ville jeg være fristet til å svare NEI. Men nå vet jeg at om man dekket Asia med megawatt-lasere (sånne har blitt utviklet av det amerikanske forsvarsdepartementet for å ødelegge raketter i luften, men jeg tror ikke de kom helt i mål) så ville man ha klart å lyse opp hele månen. Og jeg har svaret på ha slags lasere vi måtte ha brukt for å fordampe hele månen (men jeg sier det ikke, bæda).

Altså: Løp og kjøp (takk for bok, send gjerne fler).


2 kommentarer

Lukten av regn

Det har regnet litt for mye de siste dagene, men du vet hva jeg mener: Lukten som oppstår etter en ettermiddagsskur på en ellers solfylt dag. Det lukter sommer og varm asfalt. Kan dette forklares vitenskapelig?[/caption]

Nyheten dukket opp en dag i januar, men jeg ville spare historien til det ble sommer. Nå passer det bra.

Eksperimentet er nydelig, av den typen som alltid gir meg lyst til å jobbe med dråper og høyhastighetskameraer. To forskere ved MIT har sluppet vanndråper ned på tørre overflater som ikke er helt glatte, men er fulle av ørsmå hull eller porer, sånn som jord er. I studiet har de brukt både tørr jord og enklere porøse materialer.

Når dråpen treffer overflaten, er det en del luft som ikke rekker å unnslippe til sidene. Den blir fanget under dråpen, der den deler seg opp i flere små bobler. Boblene sitter fast i underlaget. Når vannet i dråpen trenger nedover i jorda, presses luft opp fra jorda til boblene, slik at disse vokser. I mellomtiden kommer overflaten på dråpen lengre og lengre ned, siden vannet forsvinner ned i underlaget. Når toppen av en boble er på høyde med overflaten av dråpen, sprekker boblen, og på samme måte som mye energi frigjøres når en ballong sprekker (BANG!) så fører boblesprekkingen til at ørsmå vanndråper slynges opp i lufta. Disse dråpene er så små at de ikke faller ned, men blir hengende i lufta.

Disse bittesmå vanndråpene består ikke bare av det vannet som falt ned på jorda i utgangspunktet. Luktstoffer som svevde rundt i lufta inne i jorda kan klistre seg fast på vanndråpene og bli med dem på ferden. Når du får en eller flere av disse mikrodråpene i nesa, merker du tilstedeværelsen av oljen petrichor, som lukter som regn på en solvarm bakke.

I artikkelen sin påpeker MIT-forskerne at denne prosessen, der regn får materiale fra bakken til å bli slynget opp i lufta, der det blir hengende en god stund, også kan få virus til å spre seg i lufta (ikke så hyggelig). Det har frem til nå ikke vært så lett å forklare hvorfor man ofte finner slike aerosoler, altså små partikler i atmosfæren, som inneholder mikroorganismer eller andre saker som hører til i jorda. Nå viser det seg at disse kan ha bli dannet i regnvær.

Forskerne jobbet seg systematisk gjennom en rekke forskjellige overflater og dråpehastigheter, og konkluderte med at aerosoler kan dannes i «lett til moderat regnvær» på jord som er mer finkornet enn sand og dessuten ganske hardpakket. MIT har laget en fin film om eksperimentet, bare se her:


3 kommentarer

Elektrisitet fra fottrinn

I dag kom jeg over en nyhet på et sted som jeg trodde formidlet forskningsnyheter, men som jeg nå er blitt betydelig mer skeptisk til. Historien er om et selskap ved navn Pavengen som har lansert et crowdfunding-prosjekt (altså de vil at vanlige folk skal gi dem penger) for å utvikle sitt prosjekt, som er en type fliser som genererer elektrisitet når man går på dem.

Det høres jo flott ut. Gå gjør vi jo uansett, og tenk på all den energien som går til spille hver gang vi tråkker ned. 

Men – stopp opp her. Vi går faktisk ikke rundt og sløser med energi for hvert fotsteg. Når foten settes i bakken virker det en kraft mellom foten og underlaget. Den fører til at foten løftes opp i neste steg.

Om man skal bruke «noe av denne energien» til å generere elektrisitet, så må folk faktisk bruke MER energi i hvert tråkk. Jo mer energi man skal ha ut av hvert steg, desto mer vil det føles som å gå i sand. Tungt.

Pavengen skriver at de er i stand til å generere i gjennomsnitt 7 watt energi per fotsteg. 

Dette høres litt rart ut. Energi måles i joule, ikke watt. Watt er et mål på hvor mye energi man genererer per sekund. De de isåfall mener, får man tro, er at om folk trår kontinuerlig på underlaget i sånn omtrent vanlig gangfrekvens, så blir gjennomsnittlig elektrisitetsgenerasjon 7 joule per sekund.

Er dette rimelig? Etter litt leting på internettet fant jeg heldigvis noen som hadde gjort en skikkelig analyse av problemet. Det viser seg at en øvre grense for hvilken effekt man kan forvente å få ut av en (voksen) person som går, uten at denne personen skal bli så irritert over det myke underlaget at hen begynner å trå på en rar og energisparende måte, er omtrent 13 watt. Dette er mekanisk energi, som man så må konvertere til elektrisitet, og i praksis finnes det ikke noen veldig effektiv måte å gjøre dette på. Det beste folk så ut til å mene at de skulle greie da artikkelen ble skrevet for 10 år siden var 1 watt per sko, som vi kan gange opp til 2 watt per person som går på Pavengens underlag.

Om du går på dette underlaget i en time vil du ha generert 2 watt-timer, som sånn omtrent tilsvarer energien i ett AA-batteri.

Så hva kan vi bruke energien fra dette gåkraftverket til? Det kan være greit å sammenligne med hvor mye effekt, altså hvor mange Watt, en del vanlige elektriske dingser bruker. Her er en oversikt over hvor mange personer som må gå kontinuerlig for å drive en del vanlige apparater, med tall tatt fra denne oversikten:

  • elektrisk klokke: en person
  • stereoanlegg: 12 personer
  • «vanlig» 60 watt lyspære lampe: 30 personer (men «bare» 5 personer for å drive en tilsvarende LED-lampe)
  • kjøleskap: 80 personer
  • støvsuger: 500 personer
  • oppvaskmaskin: 1000 personer

Om premisset er at folk skal bruke muskelkraft til å generere elektrisiteten vi skal bruke, kunne vi muligens ha gjort det mer effektivt? Hva med å plassere en spinningsykkel et sted langs denne gangveien, og be folk ta seg en tråkk på vei til jobb? Siden de da lett ville kunne generere 60 watt, ville de bidra med samme mengde energi til batteriene som på ett minutt som de ville ha gjort med en halvtimes gange.

Vi er nødt til å finne miljøvennlige måter å generere elektrisitet på, det er sant. Men er dette måten å gjøre det på? Nei, nei og atter nei! Dette monner ingen ting.

I følge nyhetssaken har selskapet allerede

installed their flooring under a small soccer pitch, a small walkway at Heathrow airport, Federation Square in Australia and multiple other small venues.

De har altså greid å selge inn konseptet sitt til store og seriøse aktører som kan skryte av at de er miljøvennlige. Og, fantastisk nok sier de at de har

 designs worked out for systems able to generate megawatts of power—entranceways to office buildings come to mind, or larger parts of airports—anywhere a lot of people walk over long periods of time.

Megawatt – det er altså millioner av watt. Om hver person genererer 2 watt, kan du selvfølgelig generere en milllion watt av en halv million mennesker. Men det var da fryktelig mange. 

Dette minner litt om saken om «Grønt Norge», der Waleed Ahmed og Flemming Bordoy lurte til seg massevis av penger ved å påstå at de hadde funnet opp en solcelledrevet iPhone-lader som kunne lade under vanlig innelys. Du skal ikke ha så veldig mye fysikkutdannelse før du forstår at dette er tull, men de greide allikevel å drive det langt.

Om du hører at din kommune eller arbeidsplass har tenkt å installere Pavengen-gulv for å være miljøvennlige så er det fint om du sier fra at det er tull.


1 kommentar

Det blir fint på labben!

I september ryddet jeg, En hel lab skulle gjøres klar etter en 15-20 års bruk og settes klar til nye oppgaver. Vegg ble reparert, gammelt støv vasket ut og nå har vi begynt å fylle den opp med leketøy. Det er på tide med en oppdatering.

Hovedpersonen på labben blir en SFA2000, et Surface Forces Apparatus. Selve SFA2000 har enda ikke ankommet fra USA, men siden dette er et instrument det bare finnes noen få av rundt i verden er det ikke bare å bestille en dings og sette den på bordet. Under er noen av delene jeg har kjøpt og satt opp og begynt å teste:

– optisk dempet bord (det blanke) ble hentet fra kjelleren. Sterke karer hjalp til med flyttingen. En annen hjelpsom kar fra verkstedet hjalp meg med å trekke slange fra trykkluftuttaket på veggen for å koble til bordet. Dette må man ha for at ikke eksperimentet skal ødelegges av vibrasjoner.

– Den lille dingsen med rød nese bakerst til høyre på bordet er en lampe som skal gi hvitt og helt stabilt lys.

– Optisk ditt og datt på bordet ligger og venter på ditt og datt som ikke har kommet enda. Da skal jeg montere opp linsene mine og se om jeg klarer å fokusere lyset på riktig sted.

– Den mørkeblå «kassa» oppå et lite bord oppå bordet er et spektrometer, som man bruker til å splitte lyset i alle bølgelengdene sine. På baksiden sitter et veldig fancy kamera som er vannkjølt. Jeg koblet på vannledningene i dag (blå greier som går ned til vannsirkulatoren under det hvite bordet), men den ene koblingen lekker litt fortsatt, og det går jo ikke. Bordet til spektrometeret har verkstedet laget for meg.

– PCen er selvfølgelig kjøpt inn spesielt for formålet med et par spesielle kort i seg. På den ene skjermen kan man se signalet fra spektrometeret. I tillegg kommer jeg til å skrive en del programvare for å kjøre eksperimentet og analysere data.

– labfrakk nonsjalant slengt over stolryggen, såklart.

IMG_3778

Rett ovenfor bordet til SFA-en har vi satt en AFM, som er et Atomic Force Microscope. Den skal vi bruke til å avbilde overflater på nanoskala. Denne har ikke jeg kjøpt, men det var ingen som brukte den, så jeg hentet den opp fra kjelleren. Blytungt betongfundament + steinplate (for å unngå vibrasjoner) fant jeg på en annen lab.

Selve AFM-en er liten og nett (den røde og svarte lille sylinderen), men den har en kontrollboks (hvit greie under benken) som er ganske stor.

IMG_3779

Mikroskop er også fint å ha. Dette fant jeg i 4. etasje, det ble kjøpt til et annet prosjekt for mange år siden og var nå stort sett ubrukt. Her er eksperiment in action (det står IKKE RØR på den grønne lappen, veldig viktig). Kameraet på mikroskopet er programmert til å ta bilder med jevne mellomrom, som man så kan sette sammen til en film.

IMG_3780

Her har vi kjemibenken, med pH-og ioneprobe som er koblet til datamaskin, presis labvekt, et nytt rørestativ og ymse annet stæsj.

Stolen er visst litt skral.

IMG_3781

I dette hjørnet har vi fått inn en LAF, altså en Laminar Airflow Bench. Da den ble levert var jeg ganske engstelig for om den skulle komme seg inn gjennom døren. Det gikk såvidt, men ikke uten at jeg måtte mobilisere folk for å flytte noen enorme skap fra gangen på veldig kort varsel. Nå står den der og går nok ingen steder med det første.

LAF-benken trekker inn luft gjennom et partikkelfilter i toppen og slipper den ned i luftstrøm uten turbulens, slik at ingen støvkorn fra utsiden kan bli trukket inn i arbeidsbenken. Denne skal vi bruke til å jobbe med veldig rene ting, både for å gjøre klar overflater til SFA-eksperimenter, og til å lage mikrofluidikk-celler som brukes på labbene i kjelleren. Den er ikke helt klar ennå, for verkstedet skal montere en spin-coater og en varmeplate med avtrekk i den ene enden.

IMG_3782

Det som er ekstra hyggelig er at det ikke bare er meg på labben lengre. Nå er vi fire stykker som er inn og ut og driver med ymse ting her. Ikke bare er det trivelig med folk, men det gjør jo også at ting blir gjort både fortere og bedre enn om jeg skulle ha drevet med alt helt selv. I morgen kommer en rørlegger som skal legge opp rør til nitrogen. Det er ofte kjekt å kunne blåse litt med nitrogen så det skal vi kunne gjøre fire forskjellige steder i rommet.

Se så fint det blir!

IMG_3783


2 kommentarer

Det er lurt å kunne programmere

Min spesialitet som forsker er at jeg gjør eksperimenter. Det betyr ikke at det er det eneste jeg gjør, for jeg har også publisert resultater av simuleringer, teoretisk arbeid og til og med feltarbeid. Men det betyr at jeg har bedre trening i det å gjøre eksperimenter enn mange andre, og at det er mange andre som er bedre til å løse ligninger og å skrive dataprogrammer enn det jeg er. Siden man gjerne oppnår mest når alle får gjøre det de er best til, holder jeg meg gjerne til eksperimentene.

Men eksperimentelt arbeid består slett ikke bare i å stå på labben og skru sammen ting og måle det ene og det andre. Man må også kunne bruke måleresultatene til noe. Når man har samlet en lang liste med data, kan man for eksempel lime dataene inn i et regneark, legge inn formler og plotte og lese av verdier til man får det man er ute etter.

Data.

Data.

Det fungerer helt fint, men jeg blir fryktelig lei av å klikke på filer og markere og kopiere og lime etterhvert. Alt for mye klikking.

Her kommer programmeringen inn. Om man bare kan de rette triksene, kan man skrive et program som gjør at datamaskinen selv kan åpne filer, kopiere inn tall, gjøre utregninger og lagre det som skal lagres. Ett trykk og vips (eller, mens du drikker en kopp kaffe) kommer resultatene ut helt av seg selv.

3890. Matlab fant svaret.

3890. Matlab fant svaret.

Ikke nok med det: Datamaskinen blir ikke sliten av av utregninger som er lange og kompliserte og som kanskje må gjøres en million ganger for å komme fram til svaret. Der man før i tiden måtte bruke forenklinger, for å i det hele tatt å ha muligheten til å komme fram til et svar, kan man nå helt uten anstrengelse få datamaskinen til å regne ut den eksakte løsningen.

Om man kan programmere så kan man altså ikke bare spare seg for enormt mye kjedelig arbeid i dataanalysen, man kan også få enda mer eksakte svar enn om man skulle gjøre analysen på gamlemåten.

Det kan kanskje virke rart, men de fleste som blir trent opp i eksperimentell fysikk, kjemi eller noen av de andre naturvitenskapene rundt omkring i verden ikke spesielt mye programmering. Her har studentene i Oslo en kjempefordel, siden de lærer å bruke programmering som verktøy helt fra første semester. Dessverre gjør visst dette at alle studentene vil drive med fysikk foran en datamaskin, istedenfor å leke med virkelige ting på laboratoriet. Det tror jeg vi bør gjøre noe med, men jeg vet ikke helt hva.

Instituttet har laget en fin liten video om databeregningene i utdanningen. Kommende fysikkstudenter: se og bli inspirert!


Legg igjen en kommentar

Jeg er ikke geolog: Mine tanker om naturvitenskapene.

Jeg digger geologi, men jeg er ikke geolog. I dag har jeg vært på geologikonferanse. Jeg var invitert som keynote speaker, noe som selvfølgelig er en stor ære, og ikke så rent lite skummelt som fysikere blant alle disse geologene. Mens jeg snakket om glade og mindre glade atomer på overflater, demonstrerte geologene gang på gang at de har et ordforråd som er mange ganger større enn mitt.

Dette passer godt inn i mitt bilde av de forskjellige grenene av naturvitenskap, som er omtrent slik:

1. Matematikk (egentlig ikke en naturvitenskap): puslespill og filosofering. Vakkert og abstrakt. Krever fryktløshet og en evne til å sjonglere tanker og ikke miste tråden.

2. Fysikk: Forstå de grunnleggende prinsippene for hvordan verden fungerer. Jo enklere, desto bedre. Detaljene kan vi overlate til andre. Krever innlevelsesevne, fantasi og evnen til å ressonere. Man slipper ofte å bry seg tall og om navn på ting.

3. Kjemi: Om hvordan atomer og molekyler oppfører seg mot hverandre. Bruker reglene fra fysikken, men for å kunne forklare virkelige systemer uten å måtte ta alt fra starten hele tiden så lærer kjemikere seg en imponerende mengde nyttige fakta. Kjemi krever nøyaktighet og god hukommelse.

4. Biologi: Fysikk og kjemi anvendt på levende ting. Enormt komplekst. Mye foregår på tidsskalaer som er såpass korte at man kan gjøre eksperimenter eller observere hva som skjer i naturen og lære fra det. For å forsøke å lage system i kaoset går mye av biologien ut på å kategorisere og klassifisere. Derfor er det mange navn å holde styr på. Krever tålmodighet og nøyaktighet og nok dedikasjon til å orke å dra på labben midt på natten for å holde cellene i live.

5. Geologi: Fysikk og kjemi anvendt på alt det ikke-levende som jorda består av. Stort sett kan man bare observere resultatet av ukjente prosesser som har foregått gjennom millioner av år. Geologi er et slags veldig komplisert detektivarbeid for å finne ut av jordas historie, og om man tror man forstår den, hvordan ting kommer til å utvikle seg fremover. Mye kategorier og navn, av samme grunn som i biologien. Krever evne til å se mønstre i kaos og til å huske og uttale vanskelige navn, men man slipper å holde eksperimentene i live.

Siden jeg liker naturen, men er enormt dårlig til å huske navn på ting (og folk, beklager), passer fysikken meg godt. Fysikere kan sysle meg alt, men overlate pirkearbeidet til andre.

Dagens høydepunkt, bortsett fra at jeg fikk unnagjort foredraget mitt:
Henrik Svensen fikk en meget velfortjent pris for formidling. Hipp hurra!
– Spennende foredrag om fjellskred i norske fjorder og om overvåkningen av Åknes og Mannen.

Dagens nedtur: Fly. Forsinkelse. Neste gang tar jeg tog til Stavanger.


Legg igjen en kommentar

Gravitasjon, og verdens største vakuumkammer

På labben har jeg en vakuumklokke. Den er noe sånt som 20 cm i diameter og omtrent like høy. Jeg kan koble en pumpe til den og suge ut all lufta. I naturfagstimene kan man bruke vakuumklokker til å gjøre kule triks, som å knyte igjen tilsynelatende tomme ballonger (eller latexhansker) og se dem blåse seg opp når lufta rundt forsvinner.

Vakuumklokka er konstruert av tykt glass og er rund for å lettere kunne stå imot trykket av lufta på utsiden, når den ikke har noe luft på innsiden som kan trykke imot.

I videoen under kan du se verdens største vakuumkammer. Det er fantastisk. Og så kan du se hva som som skjer når en bowlingkule og en fjær faller ved siden av hverandre, uten luftmotstand. Du vet sikkert hvordan det kommer til å gå, men det er fantastisk allikevel.

Videoen er produsert av BBC og ble delt på I Fucking Love Science i dag.


Legg igjen en kommentar

«Hjemme hos»-reportasje om pastakoking

I dag hadde jeg besøk av AftenpostenTV som ville ha meg til å forklare hvorfor en tresleiv på tvers over pastakjelen får den til å la være å koke over.

Ikke tidenes beste triks, kanskje, men det er nå litt artig. Siden det var planleggingsdag i barnehagen var jentene hjemme og fikk spise så mye de ville av både kokt og ukokt pasta. Og så ble det spagettigrateng til middag. Det var ikke så populært.

Skulle kanskje ha prøvd å sminke bort de jetlag-ringene jeg har under øynene.

Screenshot 2014-09-01 19.16.03

Dette er bare et screenshot, du kan se videoen ved å klikke her.


Legg igjen en kommentar

Luftspeilinger

En god kollega hadde vært på langtur med bil i ferien, og han hadde flere ganger sett luftspeilinger på asfalten når de kjørte lange rette strekninger. Det er sikkert mange som har sett himmelen speile seg i motorveien på varme dager. Hvordan blir den varme asfalten plutselig til et speil?

Luftspeiling på motorveien. Bilde: "A Highway Mirage", Michael Gil/FLickr/CC license.

Luftspeiling på motorveien. Bilde: «A Highway Mirage«, Michael Gil/FLickr/CC license.


Selv forbinder jeg luftspeilinger aller mest med Donald. Donald går i ørkenen og er fryktelig tørst. Han ser et basseng og kaster seg ned i det for å drikke. Men så viser det seg at det bare er sand. Jeg mener at det finnes flere varianter, blant annet en der han ser en bod som selger kald drikke.

Denne siden fra et Micky Mouse-blad fra 1951 har jeg kopiert fra denne bloggen.

Denne siden fra et Micky Mouse-blad fra 1951 har jeg kopiert fra denne bloggen.


Lys og luft
Vanligvis går lyset rett frem gjennom lufta, og når lyset fra en ting treffer øynene våre, forstår hjernen vår at denne tingen befinner seg i den retningen lyset kom fra.

Men luft er ikke alltid bare luft. Når lufta varmes opp, blir det lengre mellom hvert luftmolekyl. Lufta tar mer plass, den blir lettere og den stiger oppover. Og siden det er færre molekyler å snakke med, går lyset fortere i varm luft enn den gjør når lufta er kald.

Hvordan sand blir til speil
Som man merker når man går barbeint, kan asfalt (og ørkensand) bli svært varm når sola skinner på den. Dette fører til at lufta inntil asfalten også varmes opp. Den varme lufta stiger opp og avkjøles. Altså blir det liggende et lag med veldig varm luft helt nederst mot bakken, med en gradvis overgang til den kjøligere lufta over.

Tenk deg en lysstråle fra himmelen, som kommer på skrått inn mot den varme veien. Når lyset kommer inn i varmere luft, vil det gå litt fortere. Siden den nederste delen av lysstrålen treffer den varme lufta først, vil den gå fortest, og det får hele lysstrålen til å bøye seg inn langs bakken.

Dersom temperaturforskjellen er tilstrekkelig stor over et lite område, vil lysstrålen svinge så mye at den plutselig er på vei oppover igjen. Uten at den noen gang har truffet bakken. Det er litt som om lyset har truffet et speil, bortsett fra at det svinger gradvis i steden for å sprette ut som en sprettball.

Du kan se at himmelen speiler seg i veien om du befinner deg omtrent i samme høyde som der temperaturforandringen skjer. Inne i en bil på veien, for eksempel. Om du har flaks.

Hjernen gjør så godt den kan
Om du ser på bakken langt foran deg, og ser et speilbilde av himmelen, så kan ikke hjernen forstå annet enn at det må ligge noe blankt akkurat der som har laget det speilbilde. I ørkenen blir det nødt til å være en speilblank vannoverflate.

Men du vil aldri nå helt frem til den – om du ikke er Donald.

Luftspeiling i Egypt. Bilde: "Mirage in the Desert", Michael Gwyther-Jones//Flickr/CC lisence.

Luftspeiling i Egypt. Bilde: «Mirage in the Desert«, Michael Gwyther-Jones/Flickr/CC license.


2 kommentarer

Regnbuen på 6:40

Før påske hadde jeg gleden av å delta på noe som var helt nytt for meg: Et konsept som kalles Pecha Kucha, og som har blitt kjørt på DogA, Norsk Design- og Arkitektursenter, i åtte år nå. Konseptet går ut på at foredragsholdre får velge 20 bilder, og vise dem i nøyaktig 20 sekunder hver, og snakke mens bildene vises i 6 minutter og 40 sekunder. Gjengen som arrangerer Pecha Kucha er flinke til å velge folk som har noe å fortelle om riktig varierte saker.

Oppdraget mitt var å «fortelle om noe kult i naturen», så det var jo ganske åpent. Jeg bestemte meg for å snakke om regnbuer. De er desidert kule, og det finnes fine bilder av dem.

Dette er et av de korteste foredragene jeg har gjort noen gang, og et av de jeg har øvd aller mest på. Når man har så kort tid, og bildene skifter automatisk, er det ikke mye rom for improvisasjon. Vanligvis tar jeg en del på sparket, men her måtte hvert ord sitte som spikret og jeg måtte finpusse alle setningene for å ikke bruke for mye tid. Det var en morsom øvelse.

Hele programmet ble filmet av Aftenpostens WebTV, og resultatet er nå tilgjengelig her – til opplysning og forlystelse når du har 6:40 ledig.

(har du flere ganger 6:40 ledig, bør du se noen av de andre innslagene fra Pecha Kucha. Jeg anbefaler spesielt den som heter «De blåste tobakk opp i baken på de avdøde»).

117-1773_IMG