Anja Røyne

Fysiker


Legg igjen en kommentar

Da jordkloden ble delt i to

Da jeg var med på Abels tårn i slutten av oktober fikk jeg svare på et fint spørsmål fra lytter (10 år): kan jorda sprekke i to eller flere deler? Spørsmålsstilleren var klar over at dette var usannsynlig, men påpekte samtidig at «alt kan jo gå i stykker». Det er jo sant.

For jorda har faktisk gått i stykker! Og nå har det kommet rykende fersk forskning om saken.

Et solsystem blir til

Solsystemet vårt ble til fra en sky av med rusk og rask som hadde samlet seg i verdensrommet. Som en kosmisk hybelkanin tiltrakk den seg stadig mer materiale helt til den ble så tung at materialet i midten presset seg sammen og ble til en lysende stjerne, med store og mindre biter av stein og is i bane rundt seg. Hver gang noen av bitene av materiale rundt sola kolliderte med hverandre, var det stor sjanse for at de klebet seg til hverandre og ble til en større bit. Og i løpet av solsystemets første titalls millioner år ble det gradvis flere store planeter med mer tomrom mellom seg.

For 4,5 milliarder år siden, rundt 100 millioner år etter at solsystemet tok til, gikk også den unge jorda i bane rundt sola. Men ifølge en ny artikkel som har sett på isotopsammensetningene i steiner fra jorda, månen og meteoritter, lå kanskje ikke jorda pent plassert mellom Venus og Mars slik den gjør det i dag. Resultatene tyder på at jorda hadde en nær nabo, en planet på størrelse med Mars, som har fått navnet Theia.

Men vi ser ikke Theia på himmelen i dag, bare rester av den. Theia kolliderte nemlig med jorda, kollisjonen slynget materiale fra begge planetene ut i bane rundt jorda, og noe av det ble til månen. Resten ble til planeten vi bor på.

Dette er ikke et bilde av Theia som kolliderer med jorda. Fra Wikimedia commons: This artist’s concept shows a celestial body about the size of our moon slamming at great speed into a body the size of Mercury. NASA’s Spitzer Space Telescope found evidence that a high-speed collision of this sort occurred a few thousand years ago around a young star, called HD 172555, still in the early stages of planet formation. The star is about 100 light-years from Earth.

Men sprakk den?

Så, ja – jorda har gått i to. Riktignok ikke av seg selv. Ting går ikke i stykker helt av seg selv, og det skal sterke krefter til for å rive i stykker en hel planet.

Og for å være pirkete, så blir det ikke helt riktig å si at den sprakk eller knakk i to. Planeter er ikke sprø ting som kan knuse. Det er bare et tynt lag, den aller ytterste delen av jordskorpen, som er sprø nok til å kunne sprekke opp. Resten av jorda er seig og oppfører seg mer som en slags veldig tyktflytende sirup om den blir utsatt for krefter. Da de to planetene kolliderte var det så mye energi involvert at stein smeltet og til og med fordampet.

Småstein i verdensrommet kan gå i to av seg selv

Asteroider er små (mindre enn planeter) steinbiter som går i bane rundt sola. Siden de er så små har de ikke en sterk tyngdekraft som trekker materiale inn mot midten og får dem til å bli runde – asteroider kan ha alle mulige slags former.

Når de er så små kan de faktisk også bli dyttet på av sola. Når sollyset skinner på deg, dytter det faktisk også på deg med en liten kraft. Ikke nok til å få deg ut av balanse, men for en liten stein i universet som ikke kjenner på andre krefter, kan det over tid få noe å si. Spesielt om asteroiden har en ujevn som gjør at sola dytter mer på den ene siden enn den andre mens asteroiden går i bane. Da vil asteroiden med tiden snurre fortere og fortere rundt seg selv. Og når en liten nok ting spinner fort nok rundt seg selv, kan det få den til å dele seg i to og bli til et asteroidepar som snurrer både rundt hverandre og rundt sola.


5 kommentarer

Tidevannet er en bølge med bølgelengde like stor som halve jordas omkrets

Ja, nemlig.

For den tid tilbake fikk jeg en oppgave der jeg ble nødt til å lære meg en del om tidevann, noe jeg aldri har hatt noe særlig forhold til. Da lærte jeg mye spennende. Hør bare:

Vi har alle lært at tidevannet skyldes at månen trekker på havene. Månen bruker litt over et døgn på en runde rundt jorda. Men hvor mange ganger har vi høyvann i løpet av et døgn? To! Det er høyvann både på den siden av jorda som vender mot månen, og den som er lengst bort fra månen.

Gravitasjonskraften, som er den kraften som månen trekker på oss med, er mye kraftigere når ting er nære hverandre enn når de er langt fra hverandre. Når månen står et bestemt sted i forhold til jorda, trekker den
mest på vannet på den siden av jorda som vender mot den
litt mindre på selve jorda
og minst på vannet på den siden av jorda som vender bort fra månen.
Dette resulterer i at vannet buler ut mot månen, fordi det blir trukket mot den, men også at det buler vekk fra månen, fordi jorda blir trukket vekk fra vannet. Disse bulene danner to topper i en bølge med bølgelengde som er så stor som halve jordas omkrets, og de beveger seg rundt jorda i takt med månen. Når jorda, sola og månen står på linje gjør effekten fra sola i tillegg til månen at vi får ekstra høyt tidevann, springflo.

bilde: Shortlake's Hobby (flickr)

Tidevannsforskjell i Bay of Fundy. bilde: Shortlake’s Hobby (flickr)

Den store tidevannsforskjellen i Bay of Fundy har gitt opphav til spesielle fiskemetoder. (Bilde fra Macmillans "Tides", 1966)

Den store tidevannsforskjellen i Bay of Fundy har gitt opphav til spesielle fiskemetoder. (Bilde fra Macmillans «Tides», 1966)

Noen steder på jorda, som i Oslofjorden, eller i Middelhavet, er tidevannet ganske kjedelig. Det er nesten ingen forskjell på høyvann og lavvann. Andre steder er forskjellen dramatisk. Det stedet på jorda som har størst forskjell på flo og fjære er Bay of Fundy, på østkysten av Canada. Her er spennet på hele 14,5 meter.

Som sagt er det nesten ikke tidevannsforskjell i Middelhavet. I Atlanterhavet har vi to omtrent like høyvann i døgnet, mens i Stillehavet har man en høy flo etterfulgt av en lavere flo. Vi kan forstå dette ved å tenke på verdenshavene som bøtter av forskjellig størrelse. Når du bærer en bøtte full av vann, gjelder det å unngå at det begynner å skvalpe. Svinger du på bøtta i akkurat feil takt, vil bølgen i bøtta forsterkes og vannet skvalper ut over sidene. Da har du truffet bøttas egenfrekvens. Tilfeldigvis er det sånn at Stillehavet har en egenfrekvens på omtrent et døgn, slik at annenhver flo forsterkes. Atlanterhavet er halvparten så stort, og liker bedre svingninger på et halvt døgn. Derfor blir begge tidevannene like store. Egenfrekvensen til Middelhavet passer ikke med tidevannet i det hele tatt, så ingenting forsterkes og vannet holder seg ganske flatt. (Dette ble en ulempe for romerne da de kom med galeiene sine og skulle innta de britiske øyer. Innbyggerne der kunne dra nytte av den store tidevannsforskjellen som romerne ikke hadde noen erfaring med.)

Kartet under er lånt herfra.
Det viser flere fascinerende ting:
– Hvor tidevannsforskjellen er stor (røde farger) og hvor den er lav (blå farger)
– De hvite linjene er områder som alltid har høyvann på samme tid. Man kan tenke seg at den hvite linja viser hvor toppen av tidevannbølgen befinner seg på ett bestemt tidspunkt. Tidsforskjellen mellom hver linje er en time.
– På grunn av jordrotasjonen beveger tidevannsbølgen seg rundt noe som kalles amfidromiske punkter. Det er punktene der de hvite linjene møtes. I disse punktene er det konstant høyvann.
M2_tidal_constituent